1 |
HALLEK M, AL-SAWAF O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures[J]. Am J Hematol, 2021, 96(12): 1679-1705.
|
2 |
PUTOWSKI M, GIANNOPOULOS K. Perspectives on precision medicine in chronic lymphocytic leukemia: targeting recurrent mutations-NOTCH1, SF3B1, MYD88, BIRC3[J]. J Clin Med, 2021, 10(16): 3735.
|
3 |
PETRACKOVA A, TURCSANYI P, PAPAJIK T, et al. Revisiting Richter transformation in the era of novel CLL agents[J]. Blood Rev, 2021, 49: 100824.
|
4 |
ALMASRI M, AMER M, GHANEJ J, et al. Druggable molecular pathways in chronic lymphocytic leukemia[J]. Life, 2022, 12(2): 283.
|
5 |
AGATHANGELIDIS A, CHATZIDIMITRIOU A, GEMENETZI K, et al. Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL[J]. Blood, 2021, 137(10): 1365-1376.
|
6 |
SHORER ARBEL Y, BRONSTEIN Y, DADOSH T, et al. Spatial organization and early signaling of the B-cell receptor in CLL[J]. Front Immunol, 2022, 13: 953660.
|
7 |
DELGADO J, NADEU F, COLOMER D, et al. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies[J]. Haematologica, 2020, 105(9): 2205-2217.
|
8 |
MEIER-ABT F, LU J Y, CANNIZZARO E, et al. The protein landscape of chronic lymphocytic leukemia[J]. Blood, 2021, 138(24): 2514-2525.
|
9 |
LÓPEZ-OREJA I, PLAYA-ALBINYANA H, ARENAS F, et al. Challenges with approved targeted therapies against recurrent mutations in CLL: a place for new actionable targets[J]. Cancers, 2021, 13(13): 3150.
|
10 |
POZZO F, BITTOLO T, TISSINO E, et al. Multiple mechanisms of NOTCH1 activation in chronic lymphocytic leukemia: Notch1 mutations and beyond[J]. Cancers, 2022, 14(12): 2997.
|
11 |
AL-SAWAF O, FISCHER K. TP53 mutations in CLL: does frequency matter?[J]. Blood, 2021, 138(25): 2600-2601.
|
12 |
ALBI E, CAPASSO A, SCHIATTONE L, et al. Are we finally getting personal? Moving towards a personalized approach in chronic lymphocytic leukemia[J]. Semin Cancer Biol, 2022, 84: 329-338.
|
13 |
ROBAK T, WITKOWSKA M, SMOLEWSKI P. The role of bruton's kinase inhibitors in chronic lymphocytic leukemia: current status and future directions[J]. Cancers, 2022, 14(3): 771.
|
14 |
GABALLA S, PINILLA-IBARZ J. BTK inhibitors in chronic lymphocytic leukemia[J]. Curr Hematol Malig Rep, 2021, 16(5): 422-432.
|
15 |
ZAIN R, VIHINEN M. Structure-function relationships of covalent and non-covalent BTK inhibitors[J]. Front Immunol, 2021, 12: 694853.
|
16 |
ABRISQUETA P, LOSCERTALES J, TEROL M J, et al. Real-world characteristics and outcome of patients treated with single-agent ibrutinib for chronic lymphocytic leukemia in Spain (IBRORS-LLC study)[J]. Clin Lymphoma Myeloma Leuk, 2021, 21(12): e985-e999.
|
17 |
REDA G, MATTIELLO V, FRUSTACI A M, et al. Ibrutinib in patients over 80 years old with CLL: a multicenter Italian cohort[J]. Blood Adv, 2023, 7(4): 525-528.
|
18 |
GHIA P, PLUTA A, WACH M, et al. Acalabrutinib versus investigator's choice in relapsed/refractory chronic lymphocytic leukemia: final ASCEND trial results[J]. Hemasphere, 2022, 6(12): e801.
|
19 |
SHARMAN J P, EGYED M, JURCZAK W, et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia[J]. Leukemia, 2022, 36(4): 1171-1175.
|
20 |
BYRD J C, HILLMEN P, GHIA P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase Ⅲ trial[J]. J Clin Oncol, 2021, 39(31): 3441-3452.
|
21 |
CULL G, BURGER J A, OPAT S, et al. Zanubrutinib for treatment-naïve and relapsed/refractory chronic lymphocytic leukaemia: long-term follow-up of the phase I/II AU-003 study[J]. Br J Haematol, 2022, 196(5): 1209-1218.
|
22 |
BROWN J R, EICHHORST B, HILLMEN P, et al. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia[J]. N Engl J Med, 2023, 388(4): 319-332.
|
23 |
HUS I, PUŁA B, ROBAK T. PI3K inhibitors for the treatment of chronic lymphocytic leukemia: current status and future perspectives[J]. Cancers, 2022, 14(6): 1571.
|
24 |
SKÅNLAND S S, BROWN J R. PI3K inhibitors in chronic lymphocytic leukemia: where do we go from here?[J]. Haematologica, 2023, 108(1): 9-21.
|
25 |
JELLOUL F Z, YANG R, GARCES S, et al. Landscape of NOTCH1 mutations and co-occurring biomarker alterations in chronic lymphocytic leukemia[J]. Leuk Res, 2022, 116: 106827.
|
26 |
CONDOLUCI A, ROSSI D. Biology and treatment of Richter transformation[J]. Front Oncol, 2022, 12: 829983.
|
27 |
TAUSCH E, SCHNEIDER C, ROBRECHT S, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax[J]. Blood, 2020, 135(26): 2402-2412.
|
28 |
PLOUMAKI I, TRIANTAFYLLOU E, KOUMPRENTZIOTIS I A, et al. Bcl-2 pathway inhibition in solid tumors: a review of clinical trials[J]. Clin Transl Oncol, 2023, 25(6): 1554-1578.
|
29 |
ASHOFTEH N, AMINI R, MOLAEE N, et al. MiRNA-mediated knock-down of bcl-2 and mcl-1 increases fludarabine-sensitivity in CLL-CII cells[J]. Asian Pac J Cancer Prev, 2021, 22(7): 2191-2198.
|
30 |
HAFEZI S, RAHMANI M. Targeting BCL-2 in cancer: advances, challenges, and perspectives[J]. Cancers, 2021, 13(6): 1292.
|
31 |
PULLARKAT V A, LACAYO N J, JABBOUR E, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma[J]. Cancer Discov, 2021, 11(6): 1440-1453.
|
32 |
FIORCARI S, MAFFEI R, ATENE C G, et al. Notch2 increases the resistance to venetoclax-induced apoptosis in chronic lymphocytic leukemia B cells by inducing mcl-1[J]. Front Oncol, 2022, 11: 777587.
|
33 |
COCHRANE T, ENRICO A, GOMEZ-ALMAGUER D, et al. Impact of venetoclax monotherapy on the quality of life of patients with relapsed or refractory chronic lymphocytic leukemia: results from the phase 3b VENICE Ⅱ trial[J]. Leuk Lymphoma, 2022, 63(2): 304-314.
|
34 |
SHAO X Y, MENG X Q, YANG H P, et al. IFN-γ enhances CLL cell resistance to ABT-199 by regulating MCL-1 and BCL-2 expression via the JAK-STAT3 signaling pathway[J]. Leuk Lymphoma, 2023, 64(1): 71-78.
|
35 |
FANG Z L, MENG Q C, XU J, et al. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives[J]. Cancer Commun, 2023, 43(1): 3-41.
|
36 |
HASELAGER M, THIJSSEN R, WEST C, et al. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL[J]. Cell Death Differ, 2021, 28(5): 1658-1668.
|
37 |
FABBRI G, DALLA-FAVERA R. The molecular pathogenesis of chronic lymphocytic leukaemia[J]. Nat Rev Cancer, 2016, 16(3): 145-162.
|
38 |
QUIJADA-ÁLAMO M, HERNÁNDEZ-SÁNCHEZ M, RODRÍGUEZ-VICENTE A E, et al. Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression[J]. Blood Cancer J, 2021, 11(7): 127.
|
39 |
VISENTIN A, MAURO F R, CIBIEN F, et al. Continuous treatment with Ibrutinib in 100 untreated patients with TP53 disrupted chronic lymphocytic leukemia: a real-life campus CLL study[J]. Am J Hematol, 2022, 97(3): E95-E99.
|
40 |
HAMPEL P J, PARIKH S A. Chronic lymphocytic leukemia treatment algorithm 2022[J]. Blood Cancer J, 2022, 12(11): 161.
|
41 |
MORABITO F, DEL POETA G, MAURO F R, et al. TP53 disruption as a risk factor in the era of targeted therapies: a multicenter retrospective study of 525 chronic lymphocytic leukemia cases[J]. Am J Hematol, 2021, 96(8): E306-E310.
|
42 |
BOMBEN R, ROSSI F M, VIT F, et al. Clinical impact of TP53 disruption in chronic lymphocytic leukemia patients treated with ibrutinib: a campus CLL study[J]. Leukemia, 2023, 37(4): 914-918.
|
43 |
BOMBEN R, ZUCCHETTO A, POZZO F, et al. TP53 mutations and clinical outcome in chronic lymphocytic leukemia: is a threshold still needed?[J]. Hemasphere, 2023, 7(4): e855.
|
44 |
COOMBS C C, EASAW S, GROVER N S, et al. Cellular therapies in chronic lymphocytic leukemia and richter's transformation: recent developments in chimeric antigen receptor T-cells, natural killer cells, and allogeneic stem cell transplant[J]. Cancers, 2023, 15(6): 1838.
|
45 |
ABBASI S, TOTMAJ M A, ABBASI M, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies[J]. Cancer Med, 2023, 12(7): 7844-7858.
|
46 |
SIDDIQI T, SOUMERAI J D, DORRITIE K A, et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL[J]. Blood, 2022, 139(12): 1794-1806.
|
47 |
KHARFAN-DABAJA M A, YASSINE F, GADD M E, et al. Driving out chronic lymphocytic leukemia with CAR T cells[J]. Transplant Cell Ther, 2022, 28(1): 5-17.
|
48 |
GILL S, VIDES V, FREY N V, et al. Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia[J]. Blood Adv, 2022, 6(21): 5774-5785.
|
49 |
LUO Y, QIE Y Q, GADD M E, et al. Translational development of a novel BAFF-R CAR-T therapy targeting B-cell lymphoid malignancies[J]. Cancer Immunol Immunother, 2023, 72(12): 4031-4047.
|