| [1] |
HUH J E, CHOI J Y, SHIN Y O, et al. Arginine enhances osteoblastogenesis and inhibits adipogenesis through the regulation of Wnt and NFATc signaling in human mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(7): 13010-13029.
|
| [2] |
YANG S, GUO L, SU Y, et al. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells[J]. Stem Cell Res Ther, 2018, 9(1): 118.
|
| [3] |
YI X, LIU J, WU P, et al. The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs[J]. J Cell Physiol, 2020, 235(1): 349-363.
|
| [4] |
NATARAJAN S K, ZHU W D, LIANG X W, et al. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death[J]. Free Radic Biol Med, 2012, 53(5): 1181-1191.
|
| [5] |
ZHANG C, ZHEN Y, WENG Y, et al. Research progress on the microbial metabolism and transport of polyamines and their roles in animal gut homeostasis[J]. J Anim Sci Biotechnol, 2025, 16(1): 57.
|
| [6] |
HASS R, KASPER C, BÖHM S, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC[J]. Cell Commun Signal, 2011, 9: 12.
|
| [7] |
丁涵青, 张颖, 韦璐瑶, 等.精氨酸及其代谢产物对缺血性脑卒中的作用[J].现代生物医学进展, 2021, 21(11): 2179-2183.
|
|
DING H Q, ZHANG Y, WEI L Y, et al. The role of arginine and its metabolites in ischemic stroke[J]. Progress in Modern Biomedicine, 2021, 21(11): 2179-2183.
|
| [8] |
ZOU Z Q, CHENG Q, ZHOU J J, et al. ATF4-SLC7A11-GSH axis mediates the acquisition of immunosuppressive properties by activated CD4+ T cells in low arginine condition[J]. Cell Rep, 2024, 43(4): 113995.
|
| [9] |
MOSSMANN D, MÜLLER C, PARK S, et al. Arginine reprograms metabolism in liver cancer via RBM39[J]. Cell, 2023, 186(23): 5068-5083.e23.
|
| [10] |
FENG S, RAO Z, ZHANG J, et al. Inhibition of CARM1-mediated methylation of ACSL4 promotes ferroptosis in colorectal cancer[J]. Adv Sci (Weinh), 2023, 10(36): e2303484.
|
| [11] |
YOU S, LI S, ZENG L, et al. Lymphatic-localized Treg-mregDC crosstalk limits antigen trafficking and restrains anti-tumor immunity[J]. Cancer Cell, 2024, 42(8): 1415-1433.e12.
|
| [12] |
CZERWIEC K, ZAWRZYKRAJ M, DEPTUŁA M, et al. Adipose-derived mesenchymal stromal cells in basic research and clinical applications[J]. Int J Mol Sci, 2023, 24(4): 3888.
|
| [13] |
SI Z Z, WANG X, SUN C H, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies[J]. Biomed Pharmacother, 2019, 114: 108765.
|
| [14] |
OKUBO T, FUJIMOTO S, HAYASHI D, et al. Valproic acid promotes mature neuronal differentiation of adipose tissue-derived stem cells through iNOS-NO-sGC signaling pathway[J]. Nitric Oxide, 2019, 93: 1-5.
|
| [15] |
HAYASHI D, OKUBO T, SUZUKI T, et al. Valproic acid up-regulates the whole NO-citrulline cycle for potent iNOS-NO signaling to promote neuronal differentiation of adipose tissue-derived stem cells[J]. Nitric Oxide, 2021, 106: 35-44.
|
| [16] |
OKUBO T, HAYASHI D, YAGUCHI T, et al. Differentiation of rat adipose tissue-derived stem cells into neuron-like cells by valproic acid, a histone deacetylase inhibitor[J]. Exp Anim, 2016, 65(1): 45-51.
|
| [17] |
KANG E S, KIM D S, HAN Y, et al. Three-dimensional graphene-RGD peptide nanoisland composites that enhance the osteogenesis of human adipose-derived mesenchymal stem cells[J]. Int J Mol Sci, 2018, 19(3): E669.
|
| [18] |
MIRSAIDI A, GENELIN K, VETSCH J R, et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis[J]. Biomaterials, 2014, 35(26): 7326-7335.
|
| [19] |
CAO S, LI Y X, SONG R, et al. L-arginine metabolism inhibits arthritis and inflammatory bone loss[J]. Ann Rheum Dis, 2024, 83(1): 72-87.
|
| [20] |
PAN Q L, WANG D, CHEN D Y, et al. Characterizing the effects of hypoxia on the metabolic profiles of mesenchymal stromal cells derived from three tissue sources using chemical isotope labeling liquid chromatography-mass spectrometry[J]. Cell Tissue Res, 2020, 380(1): 79-91.
|
| [21] |
CRUMP N T, HADJINICOLAOU A V, XIA M, et al. Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation[J]. Cell Rep, 2021, 35(6): 109101.
|
| [22] |
KUO M T, CHEN H H W, FEUN L G, et al. Targeting the proline-glutamine-asparagine-arginine metabolic axis in amino acid starvation cancer therapy[J]. Pharmaceuticals (Basel), 2021, 14(1): 72.
|
| [23] |
MAZUREK M, ROLA R. The implications of nitric oxide metabolism in the treatment of glial tumors[J]. Neurochem Int, 2021, 150: 105172.
|
| [24] |
KHAN F H, DERVAN E, BHATTACHARYYA D D, et al. The role of nitric oxide in cancer: master regulator or NOt?[J]. Int J Mol Sci, 2020, 21(24): E9393.
|
| [25] |
ZHANG M S, JIN H, LIU Y, et al. L-Arginine self-delivery supramolecular nanodrug for NO gas therapy[J]. Acta Biomater, 2023, 169: 517-529.
|
| [26] |
HUANG G T, GRONTHOS S, SHI S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine[J]. J Dent Res, 2009, 88(9): 792-806.
|
| [27] |
SALIMIAN RIZI B, CANEBA C, NOWICKA A, et al. Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells[J]. Cancer Res, 2015, 75(2): 456-471.
|
| [28] |
LAINO G, D′AQUINO R, GRAZIANO A, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005, 20(8): 1394-1402.
|
| [29] |
MANASPON C, JONGWANNASIRI C, CHUMPRASERT S, et al. Human dental pulp stem cell responses to different dental pulp capping materials[J]. BMC Oral Health, 2021, 21(1): 209.
|
| [30] |
STEENS J, KLAR L, HANSEL C, et al. The vascular nature of lung-resident mesenchymal stem cells[J]. Stem Cells Transl Med, 2021, 10(1): 128-143.
|
| [31] |
MAJOLO F, DA SILVA G L, VIEIRA L, et al. Review of trials currently testing stem cells for treatment of respiratory diseases: facts known to date and possible applications to COVID-19[J]. Stem Cell Rev Rep, 2021, 17(1): 44-55.
|
| [32] |
EBRAHIMI F, PIROUZMAND F, COSME PECHO R D, et al. Application of mesenchymal stem cells in regenerative medicine: a new approach in modern medical science[J]. Biotechnol Prog, 2023, 39(6): e3374.
|
| [33] |
LU L L, LIU Y J, YANG S G, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials[J]. Haematologica, 2006, 91(8): 1017-1026.
|
| [34] |
HARRIS V K, STARK J, WILLIAMS A, et al. Efficacy of intrathecal mesenchymal stem cell-neural progenitor therapy in progressive MS: results from a phase Ⅱ, randomized, placebo-controlled clinical trial[J]. Stem Cell Res Ther, 2024, 15(1): 151.
|
| [35] |
LIU Y Y, LI Y, WANG L, et al. Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury[J]. Neural Regen Res, 2023, 18(8): 1657-1665.
|
| [36] |
YU Z, ZHANG W, WANG Y, et al. Extracellular vesicles derived from human umbilical cord MSC improve vascular endothelial function in in vitro and in vivo models of preeclampsia through activating arginine metabolism[J]. Mol Pharm, 2023, 20(12): 6429-6440.
|
| [37] |
HUANG Y C, YANG Z M, CHEN X H, et al. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation[J]. Stem Cell Rev Rep, 2009, 5(3): 247-255.
|
| [38] |
BARLOW S, BROOKE G, CHATTERJEE K, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells[J]. Stem Cells Dev, 2008, 17(6): 1095-1107.
|
| [39] |
CAHYADI A, UGRASENA I D G, ANDARSINI M R, et al. Relationship between Bax and Bcl-2 protein expression and outcome of induction phase chemotherapy in pediatric acute lymphoblastic leukemia[J]. Asian Pac J Cancer Prev, 2022, 23(5): 1679-1685.
|
| [40] |
SHEN S F, HUA C H. Effect of L-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction[J]. J Matern Fetal Neonatal Med, 2011, 24(6): 822-826.
|
| [41] |
GAO Z, XUE M, WANG Z. LC-MS/MS assay to confirm that the endogenous metabolite L-arginine promotes trophoblast invasion in the placenta accreta spectrum through upregulation of the GPRC6A/PI3K/AKT pathway[J]. BMC Pregnancy Childbirth, 2025, 25(1): 402.
|