1 |
ANSARI D, TINGSTEDT B, ANDERSSON B, et al. Pancreatic cancer: yesterday, today and tomorrow[J]. Future Oncol, 2016, 12(16): 1929-1946.
|
2 |
KUNZMANN V, SIVEKE J T, ALGÜL H, et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(2): 128-138.
|
3 |
BACHET J B, HAMMEL P, DESRAMÉ J, et al. Nab-paclitaxel plus either gemcitabine or simplified leucovorin and fluorouracil as first-line therapy for metastatic pancreatic adenocarcinoma (AFUGEM GERCOR): a non-comparative, multicentre, open-label, randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2017, 2(5): 337-346.
|
4 |
SEINO T, KAWASAKI S, SHIMOKAWA M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression[J]. Cell Stem Cell, 2018, 22(3): 454-467.e6.
|
5 |
TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1112-1129.
|
6 |
D'ANDREA A D. Mechanisms of PARP inhibitor sensitivity and resistance[J]. DNA Repair (Amst), 2018, 71: 172-176.
|
7 |
COLEMAN O, HENRY M, O'NEILL F, et al. Proteomic analysis of cell lines and primary tumors in pancreatic cancer identifies proteins expressed only in vitro and only in vivo[J]. Pancreas, 2020, 49(8): 1109-1116.
|
8 |
BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4): 254-268.
|
9 |
BARNES R P, DE ROSA M, THOSAR S A, et al. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening[J]. Nat Struct Mol Biol, 2022, 29(7): 639-652.
|
10 |
SUGA H. Making pituitary hormone-producing cells in a dish[Review][J]. Endocr J, 2016, 63(8): 669-680.
|
11 |
SCALISE M, MARINO F, SALERNO L, et al. From spheroids to organoids: the next generation of model systems of human cardiac regeneration in a dish[J]. Int J Mol Sci, 2021, 22(24): 13180.
|
12 |
WHITAKER R, HERNAEZ-ESTRADA B, HERNANDEZ R M, et al. Immunomodulatory biomaterials for tissue repair[J]. Chem Rev, 2021, 121(18): 11305-11335.
|
13 |
KIM Y H, DAWSON J I, OREFFO R O C, et al. Gelatin methacryloyl hydrogels for musculoskeletal tissue regeneration[J]. Bioengineering (Basel), 2022, 9(7): 332.
|
14 |
HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1/2): 299-312.
|
15 |
HERSEL U, DAHMEN C, KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003, 24(24): 4385-4415.
|
16 |
ZADPOOR A A. Meta-biomaterials[J]. Biomater Sci, 2019, 8(1): 18-38.
|
17 |
何家辰, 刘畅, 陈迟迟, 等. 制备负载细胞可注射微球及体外评价[J]. 中国组织工程研究, 2022, 26(28): 4483-4488.
|
|
HE J C, LIU C, CHEN C C, et al. Preparation and in vitro evaluation of injectable microspheres loaded with cells[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(28): 4483-4488.
|
18 |
WU J, LI G, YE T, et al. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration[J]. Chem Eng J, 2020, 393: 124715.
|
19 |
FEIG C, JONES J O, KRAMAN M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217.
|
20 |
ZHAO X, LIU S, YILDIRIMER L, et al. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs[J]. Adv Funct Mater, 2016, 26(17): 2809-2819.
|
21 |
KORNEEV K V, ATRETKHANY K N, DRUTSKAYA M S, et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis[J]. Cytokine, 2017, 89: 127-135.
|
22 |
SINGH R, MISHRA M K, AGGARWAL H. Inflammation, immunity, and cancer[J]. Mediators Inflamm, 2017, 2017: 6027305.
|
23 |
BAGHBAN R, ROSHANGAR L, JAHANBAN-ESFAHLAN R, et al. Tumor microenvironment complexity and therapeutic implications at a glance[J]. Cell Commun Signal, 2020, 18(1): 59.
|
24 |
KIM J, BAE J S. Tumor-associated macrophages and neutrophils in tumor microenvironment[J]. Mediators Inflamm, 2016, 2016: 6058147.
|
25 |
PETITPREZ F, MEYLAN M, DE REYNIÈS A, et al. The tumor microenvironment in the response to immune checkpoint blockade therapies[J]. Front Immunol, 2020, 11: 784.
|
26 |
HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322.
|
27 |
ABADJIAN M Z, EDWARDS W B, ANDERSON C J. Imaging the tumor microenvironment[J]. Adv Exp Med Biol, 2017, 1036: 229-257.
|
28 |
ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596.
|
29 |
VON AHRENS D, BHAGAT T D, NAGRATH D, et al. The role of stromal cancer-associated fibroblasts in pancreatic cancer[J]. J Hematol Oncol, 2017, 10(1): 76.
|