
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (6): 761-767.doi: 10.3969/j.issn.1674-8115.2023.06.013
• Review • Previous Articles Next Articles
JIN Fangquan1(
), FAN Chenghu2, TANG Xiaodong2(
), CHEN Yantong2, QI Bingxian2
Received:2023-02-08
Accepted:2023-06-21
Online:2023-06-28
Published:2023-06-28
Contact:
TANG Xiaodong
E-mail:3214555282@qq.com;1927981689@qq.com
Supported by:CLC Number:
JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 761-767.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.06.013
| 1 | JIANG Y H, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Prolif, 2021, 54(1): e12956. |
| 2 | 吴惠一, 刘颖, 兰亚佳, 等. 中国绝经女性骨质疏松症患病率的Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 882-890. |
| WU H Y, LIU Y, LAN Y J, et al. Meta-analysis of the prevalence of osteoporosis in Chinese postmenopausal women[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8):882-890. | |
| 3 | CUI L J, JACKSON M, WESSLER Z, et al. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among women in China: a simulation projection model from 2020 to 2040[J]. Arch Osteoporos, 2021, 16(1): 118. |
| 4 | LORENTZON M, JOHANSSON H, HARVEY N C, et al. Osteoporosis and fractures in women: the burden of disease[J]. Climacteric, 2022, 25(1): 4-10. |
| 5 | YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140. |
| 6 | LEE W C, GUNTUR A R, LONG F X, et al. Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266. |
| 7 | DONAT A, KNAPSTEIN P R, JIANG S, et al. Glucose metabolism in osteoblasts in healthy and pathophysiological conditions[J]. Int J Mol Sci, 2021, 22(8): 4120. |
| 8 | LI T C, YAN Z Q, HE S S, et al. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1[J]. Oral Dis, 2021, 27(2): 290-300. |
| 9 | ANGIREDDY R, KAZMI H R, SRINIVASAN S, et al. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages[J]. FASEB J, 2019, 33(8): 9167-9181. |
| 10 | ZHANG Y, ROHATGI N, VEIS D J, et al. PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation[J]. J Bone Miner Res, 2018, 33(6): 1114-1125. |
| 11 | GUO L, CHEN K Z, YUAN J, et al. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC[J]. J Cell Physiol, 2018, 234(1): 581-594. |
| 12 | GUO Y S, CHI X P, WANG Y F, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther, 2020, 11(1): 245. |
| 13 | YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140. |
| 14 | FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72. |
| 15 | JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]. Arch Biochem Biophys, 2021, 702: 108698. |
| 16 | HARGREAVES M, SPRIET L L. Skeletal muscle energy metabolism during exercise[J]. Nat Metab, 2020, 2(9): 817-828. |
| 17 | JIN Y, SHEN Y, SU X, et al. The small GTPases Rab27b regulates mitochondrial fatty acid oxidative metabolism of cardiac mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 209. |
| 18 | PAL S, SINGH M, PORWAL K, et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function[J]. Eur J Pharmacol, 2021, 913: 174634. |
| 19 | LEE S Y, LONG F X. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12): 5573-5586. |
| 20 | KNOWLES H J. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function[J]. Sci Rep, 2020, 10(1): 21072. |
| 21 | SHARES B H, BUSCH M, WHITE N, et al. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation[J]. J Biol Chem, 2018, 293(41): 16019-16027. |
| 22 | KUSHWAHA P, ALEKOS N S, KIM S P, et al. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice[J]. Front Physiol, 2022, 13: 997358. |
| 23 | LI X M, CHEN Y, MAO Y X, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway[J]. Front Bioeng Biotechnol, 2020, 8: 625. |
| 24 | MA C, SUN Y N, PI C C, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2[J]. Front Cell Dev Biol, 2020, 8: 599376. |
| 25 | CAO X C, LUO D Q, LI T, et al. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts[J]. J Bone Miner Metab, 2020, 38(1): 27-37. |
| 26 | LIU H D, REN M X, LI Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1[J]. Free Radic Res, 2022, 56(1): 63-76. |
| 27 | KIM H N, PONTE F, NOOKAEW I, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors[J]. Sci Rep, 2020, 10(1): 11933. |
| 28 | ZENG Z P, ZHOU X C, WANG Y, et al. Mitophagy-a new target of bone disease[J]. Biomolecules, 2022, 12(10): 1420. |
| 29 | FENG X R, YIN W, WANG J L, et al. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2021, 246(1): 97-105. |
| 30 | FAN P, YU X Y, XIE X H, et al. Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells[J]. Life Sci, 2019, 229: 36-45. |
| 31 | GUO Y Y, JIA X, CUI Y Z, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41: 101915. |
| 32 | WANG X D, MA H D, SUN J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis[J]. Biol Trace Elem Res, 2022, 200(1): 298-307. |
| 33 | LAHA D, SARKAR J, MAITY J, et al. Polyphenolic compounds inhibit osteoclast differentiation while reducing autophagy through limiting ROS and the mitochondrial membrane potential[J]. Biomolecules, 2022, 12(9): 1220. |
| 34 | AOKI S, SHIMIZU K, ITO K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation[J]. Biochem Biophys Res Commun, 2020, 527(4): 874-880. |
| 35 | BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100. |
| 36 | RAJABZADEH N, FATHI E, FARAHZADI R. Stem cell-based regenerative medicine[J]. Stem Cell Investig, 2019, 6: 19. |
| 37 | QIU T, HE Y Y, ZHANG X, et al. Novel role of ER stress and mitochondria stress in serum-deprivation induced apoptosis of rat mesenchymal stem cells[J]. Curr Med Sci, 2018, 38(2): 229-235. |
| 38 | CHEN Y M, XIONG S B, ZHAO F H, et al. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells[J]. J Biomed Mater Res A, 2019, 107(6): 1253-1263. |
| 39 | YANG K D, PEI L, ZHOU S M, et al. Metformin attenuates H2O2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway[J]. Exp Ther Med, 2021, 22(5): 1316. |
| 40 | ZHENG D L, CUI C L, SHAO C, et al. Coenzyme Q10 inhibits RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells[J]. J Biochem Mol Toxicol, 2021, 35(7): e22778. |
| 41 | REN L, CHEN X D, CHEN X B, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 580070. |
| 42 | WAN M C, TANG X Y, LI J, et al. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes[J]. Acta Biomater, 2021, 136: 137-146. |
| 43 | FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72. |
| 44 | ZHONG X Y, CUI P, CAI Y P, et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells[J]. Cell Metab, 2019, 29(4): 979-992.e4. |
| 45 | PAHWA H, KHAN M T, SHARAN K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis[J]. Mol Cell Biochem, 2020, 469(1/2): 109-118. |
| 46 | JEONG S, SEONG J H, KANG J H, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett, 2021, 595(1): 58-67. |
| 47 | NISHIKAWA K, TAKEGAMI H, SESAKI H. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation[J]. MicroPubl Biol, 2022. DOI: 10.17912/micropub.biology.000650. |
| [1] | LUO Wen, LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong. Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 233-240. |
| [2] | WANG Liyang, XUE Wei. Research progress on the role of oxidative stress in the development of diabetic bladder dysfunction [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 241-246. |
| [3] | CHEN Minghao, LIU Peiyu, WANG Xuan, WU Yixiang, JIANG Yujin, ZHANG Chaoyang, ZHANG Jingfa. Advances in drug therapy of diabetic retinopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 822-829. |
| [4] | WEI Yunxin, JIANG Xushun, CAI Mengyao, WEN Ruizhi, DU Xiaogang. Correlation analysis of COMP and autophagy in diabetic nephropathy and its functional verification [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 847-858. |
| [5] | WANG Beichen, YANG Yaoqi, BAO Qiyuan, WEN Junxiang, ZHANG Weibin, WAN Rong. Effect of early postoperative administration of zoledronic acid on the prognosis of osteoporotic femoral intertrochanteric fracture in patients with advanced ages [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 891-898. |
| [6] | ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787. |
| [7] | AN Junyi, CHEN Biying, CHEN Xunrui, YIN Shanshan, BIAN Zhouliang, LIU Feng. SFXN3 expression in head and neck squamous cell carcinoma and its effect on cell proliferation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 427-434. |
| [8] | KONG Ruxin, ZHOU Yaqun, WEI Tingyi, LEI Ming. Function and mechanism of cancer-testis antigen CT63 in chronic myeloid leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1347-1358. |
| [9] | Aishanjiang Kedeerya, FU Yi, LAI Donglin, WU Hailong, GONG Wei. An integrated prognostic model of nuclear-encoded mitochondrial gene signature and clinical information for hepatocellular carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 1-12. |
| [10] | JIA Junjie, XING Haifan, ZHANG Qunzi, LIU Qiye, WANG Niansong, FAN Ying. Renal protective effect and mechanism research of hypoxia inducible factor-1α inhibitor YC-1 in diabetic nephropathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1089-1098. |
| [11] | GAO Nan, HAO Gem, MA Bingjie, JIN Tian, MA Ke, LIU Xiaoming. Translocator protein activates autophagy in diabetic neuropathic pain rats via regulation of the Keap1/Nrf2/HO-1 signaling [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 988-996. |
| [12] | WU Qiqi, WANG Hao, LIN Li, YAN Bo, ZHANG Shulin. miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 699-708. |
| [13] | LI Xuran, TAO Shicong, GUO Shangchun. Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 406-416. |
| [14] | HONG Hanxin, WANG Longhao, LIU Huihui, PENG Hu, WU Hao, YANG Tao. Construction of translocase of inner mitochondrial membrane 8A gene knockout mice and study of its inner ear function [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 261-268. |
| [15] | LIU Chenjun, YIN Bohao, SUN Hui, ZHANG Wei. Application of non-invasive methods of radiology to the osteoporosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 385-390. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||