
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (12): 1679-1686.doi: 10.3969/j.issn.1674-8115.2025.12.014
• 综述 • 上一篇
收稿日期:2025-03-30
接受日期:2025-06-24
出版日期:2025-12-18
发布日期:2025-12-18
通讯作者:
任 骏,教授,博士;电子信箱:ren.jun@zs-hospital.sh.cn。基金资助:
LUO Yuqi1, WANG Yangyang2, REN Jun3(
)
Received:2025-03-30
Accepted:2025-06-24
Online:2025-12-18
Published:2025-12-18
Contact:
REN Jun, E-mail: ren.jun@zs-hospital.sh.cn.Supported by:摘要:
左心室肥厚是一种以左心室壁增厚、心肌质量增加为特征的心肌重塑现象,不仅与心力衰竭、冠状动脉粥样硬化性心脏病、心律失常等多种心血管疾病的发病和死亡密切相关,也被证实是认知功能障碍的独立危险因素。阿尔茨海默病作为最常见的神经退行性疾病,以进行性认知功能障碍和行为损害为特征。尽管心血管疾病与认知功能障碍的关系被广泛研究,但目前左心室肥厚影响阿尔茨海默病的核心病理机制尚未完全阐明。该文系统综述了阿尔茨海默病与心血管系统疾病的关系,以及左心室肥厚与阿尔茨海默病的共病性及其直接病理机制,以期为深入探讨心脑交互作用提供新视角。
中图分类号:
罗宇琦, 王洋洋, 任骏. 左心室肥厚相关心血管病变影响阿尔茨海默病的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(12): 1679-1686.
LUO Yuqi, WANG Yangyang, REN Jun. Advances in research on left ventricular hypertrophy-associated cardiovascular pathology in Alzheimer' s disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1679-1686.
| [1] | WONG M, DAI Y, GE J. Pan-vascular disease: what we have done in the past and what we can do in the future?[J]. Cardiol Plus, 2024, 9(1): 1-5. |
| [2] | SALARDINI A, HIMALI J J, ABDULLAH M S, et al. Elevated serum cortisol associated with early-detected increase of brain amyloid deposition in Alzheimer's disease imaging biomarkers among menopausal women: the Framingham Heart Study[J]. Alzheimers Dement, 2025, 21(4): e70179. |
| [3] | COGSWELL P M, FAN A P. Multimodal comparisons of QSM and PET in neurodegeneration and aging[J]. Neuroimage, 2023, 273: 120068. |
| [4] | ZHAO B, LI T, FAN Z, et al. Heart-brain connections: phenotypic and genetic insights from magnetic resonance images[J]. Science, 2023, 380(6648): abn6598. |
| [5] | HUANG Z, SUN A. Metabolism, inflammation, and cardiovascular diseases from basic research to clinical practice[J]. Cardiol Plus, 2023, 8(1): 4-5. |
| [6] | KIRBY A, PORTER T, ADEWUYI E O, et al. Investigating genetic overlap between Alzheimer's disease, lipids, and coronary artery disease: a large-scale genome-wide cross trait analysis[J]. Int J Mol Sci, 2024, 25(16): 8814. |
| [7] | ISLAM M R, LBIK D, SAKIB M S, et al. Epigenetic gene expression links heart failure to memory impairment[J]. EMBO Mol Med, 2021, 13(3): e11900. |
| [8] | DRIDI H, LIU Y, REIKEN S, et al. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca2+ leak through ryanodine receptor type 2[J]. Nat Neurosci, 2023, 26(8): 1365-1378. |
| [9] | TAI X Y, VELDSMAN M, LYALL D M, et al. Cardiometabolic multimorbidity, genetic risk, and dementia: a prospective cohort study[J]. Lancet Healthy Longev, 2022, 3(6): e428-e436. |
| [10] | DE ANDA-DURAN I, WOLTZ S G, BELL C N, et al. Hypertension and cognitive function: a review of life-course factors and disparities[J]. Curr Opin Cardiol, 2022, 37(4): 326-333. |
| [11] | HU H, MENG L, BI Y L, et al. Tau pathologies mediate the association of blood pressure with cognitive impairment in adults without dementia: the CABLE study[J]. Alzheimers Dement, 2022, 18(1): 53-64. |
| [12] | SIEDLINSKI M, CARNEVALE L, XU X G, et al. Genetic analyses identify brain structures related to cognitive impairment associated with elevated blood pressure[J]. Eur Heart J, 2023, 44(23): 2114-2125. |
| [13] | TAKAHASHI M K N, PARADELA R S, GRINBERG L T, et al. Hypertension may associate with cerebral small vessel disease and infarcts through the pathway of intracranial atherosclerosis[J]. Neurobiol Aging, 2025, 145: 84-95. |
| [14] | KURZ C, WALKER L, RAUCHMANN B S, et al. Dysfunction of the blood-brain barrier in Alzheimer's disease: evidence from human studies[J]. Neuropathol Appl Neurobiol, 2022, 48(3): e12782. |
| [15] | LORENZINI L, MARANZANO A, INGALA S, et al. Association of vascular risk factors and cerebrovascular pathology with Alzheimer disease pathologic changes in individuals without dementia[J]. Neurology, 2024, 103(7): e209801. |
| [16] | SHIH Y H, WU S Y, YU M, et al. Hypertension accelerates Alzheimer's disease-related pathologies in pigs and 3xTg mice[J]. Front Aging Neurosci, 2018, 10: 73. |
| [17] | FARACO G, PARK L, ZHOU P, et al. Hypertension enhances Aβ- induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP[J]. J Cereb Blood Flow Metab, 2016, 36(1): 241-252. |
| [18] | SIBLE I J, YEW B, JANG J Y, et al. Blood pressure variability and plasma Alzheimer's disease biomarkers in older adults[J]. Sci Rep, 2022, 12(1): 17197. |
| [19] | UCHIDA Y, NISHIMAKI K, SOLDAN A, et al. Acceleration of brain atrophy and progression from normal cognition to mild cognitive impairment[J]. JAMA Netw Open, 2024, 7(10): e2441505. |
| [20] | DING X, YIN L, ZHANG L, et al. Diabetes accelerates Alzheimer's disease progression in the first year post mild cognitive impairment diagnosis[J]. Alzheimers Dement, 2024, 20(7): 4583-4593. |
| [21] | DOVE A, SHANG Y, XU W, et al. The impact of diabetes on cognitive impairment and its progression to dementia[J]. Alzheimers Dement, 2021, 17(11): 1769-1778. |
| [22] | BIRAJDAR S V, MAZAHIR F, ALAM M I, et al. Repurposing and clinical attributes of antidiabetic drugs for the treatment of neurodegenerative disorders[J]. Eur J Pharmacol, 2023, 961: 176117. |
| [23] | FIŠAR Z. Linking the amyloid, tau, and mitochondrial hypotheses of Alzheimer's disease and identifying promising drug targets[J]. Biomolecules, 2022, 12(11): 1676. |
| [24] | ABBAS K, MUSTAFA M, ALAM M, et al. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid-modulating mechanisms[J]. Neurogenetics, 2025, 26(1): 39. |
| [25] | SHARP F R, DECARLI C S, JIN L W, et al. White matter injury, cholesterol dysmetabolism, and APP/Aβ dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: a hypothesis and review[J]. Front Aging Neurosci, 2023, 15: 1096206. |
| [26] | WINGO A P, VATTATHIL S M, LIU J, et al. LDL cholesterol is associated with higher AD neuropathology burden independent of APOE[J]. J Neurol Neurosurg Psychiatry, 2022: jnnp-2021-328164. |
| [27] | WONGCHITRAT P, CHANMEE T, GOVITRAPONG P. Molecular mechanisms associated with neurodegeneration of neurotropic viral infection[J]. Mol Neurobiol, 2024, 61(5): 2881-2903. |
| [28] | SULTANA O F, HIA R A, REDDY P H. A combinational therapy for preventing and delaying the onset of Alzheimer's disease: a focus on probiotic and vitamin co-supplementation[J]. Antioxidants (Basel), 2024, 13(2): 202. |
| [29] | MATSUMOTO T, TAGUCHI K, KOBAYASHI T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function[J]. J Smooth Muscle Res, 2021, 57(0): 94-107. |
| [30] | MA Y F, MA Z M, ZHANG Y Y, et al. Apigenin and baicalein ameliorate thoracic aortic structural deterioration and cognitive deficit via inhibiting AGEs/RAGE/NF-κB pathway in D-galactose-induced aging rats[J]. Eur J Pharmacol, 2024, 976: 176660. |
| [31] | FIŠAR Z, HROUDOVÁ J. CoQ10 and mitochondrial dysfunction in Alzheimer's disease[J]. Antioxidants (Basel), 2024, 13(2): 191. |
| [32] | CICEU A, BALTA C, HERMAN H, et al. Complexation with random methyl-β-cyclodextrin and (2-hidroxypropyl)-β-cyclodextrin enhances in vivo anti-fibrotic and anti-inflammatory effects of chrysin via the inhibition of NF-κB and TGF-β1/smad signaling pathways and modulation of hepatic pro/anti-fibrotic miRNA[J]. Int J Mol Sci, 2021, 22(4): 1869. |
| [33] | KHAN Z, SULEMAN M, MAQSOOD A, et al. Unveiling cardiovascular connections between familial hypercholesterolemia (FH) and left ventricular hypertrophy (LVH)[J]. BioSci Rev, 2024, 6(1): 54-69. |
| [34] | WANG W, WANG Q, QI X, et al. Associations of semaglutide with first-time diagnosis of Alzheimer's disease in patients with type 2 diabetes: target trial emulation using nationwide real-world data in the US [J]. Alzheimers Dement, 2024, 20(12): 8661-8672. |
| [35] | NAGARAJA N, FAROOQUI A, ALBAYRAM M S. Association of deep white matter hyperintensity with left ventricular hypertrophy in acute ischemic stroke[J]. J Neuroimaging, 2022, 32(2): 268-272. |
| [36] | PAPADOPOULOS A, PALAIOPANOS K, PROTOGEROU A P, et al. Left ventricular hypertrophy and cerebral small vessel disease: a systematic review and meta-analysis[J]. J Stroke, 2020, 22(2): 206-224. |
| [37] | LI Q, SU S, FENG Y, et al. Potential role of blood pressure variability and plasma neurofilament light in the mechanism of comorbidity between Alzheimer's disease and cerebral small vessel disease[J]. Alzheimers Dement, 2024, 20(7): 4891-4902. |
| [38] | BEACH T G, SUE L I, SCOTT S, et al. Cerebral white matter rarefaction has both neurodegenerative and vascular causes and may primarily be a distal axonopathy[J]. J Neuropathol Exp Neurol, 2023, 82(6): 457-466. |
| [39] | MANCA R, JONES S A, VENNERI A. Macrostructural and microstructural white matter alterations are associated with apathy across the clinical Alzheimer's disease spectrum[J]. Brain Sci, 2022, 12(10): 1383. |
| [40] | FENG T, YAMASHITA T, SASAKI R, et al. Protective effects of edaravone on white matter pathology in a novel mouse model of Alzheimer's disease with chronic cerebral hypoperfusion[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1437-1448. |
| [41] | HU H Y, HU H, JIANG J, et al. Echocardiographic measures of the left heart and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact adults: the CABLE study[J]. Alzheimers Dement, 2024, 20(6): 3943-3957. |
| [42] | YE J, WAN H, CHEN S, et al. Targeting tau in Alzheimer's disease: from mechanisms to clinical therapy[J]. Neural Regen Res, 2024, 19(7): 1489-1498. |
| [43] | SAMLUK L, OSTAPCZUK P, DZIEMBOWSKA M. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis[J]. Mol Biol Cell, 2022, 33(8): ar67. |
| [44] | SETHI P, C R D, BORRA R, et al. Mechanistic insights into tau protein-mediated regulation of oxidative stress[J]. Chin J Appl Physiol, 2024, 40: e20240028. |
| [45] | ZHANG Y L, ZHANG Y, AMAN Y, et al. Amyloid-β toxicity modulates tau phosphorylation through the PAX6 signalling pathwayFree[J]. Brain, 2021, 144(9): 2759-2770. |
| [46] | XU X, MO X, ZHANG W, et al. Local and distant atrophy mediate the relationship between tau pathology and cognition in temporoparietal region in Alzheimer's disease[J]. J Alzheimers Dis, 2025, 104(4): 1092-1102. |
| [47] | GORANTLA N V, CHINNATHAMBI S. Autophagic pathways to clear the tau aggregates in Alzheimer's disease[J]. Cell Mol Neurobiol, 2021, 41(6): 1175-1181. |
| [48] | WANG W, LU L, WU Q Q, et al. Brain amyloid-β plays an initiating role in the pathophysiological process of the PS1V97L-tg mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2016, 52(3): 1089-1099. |
| [49] | HAQUE M M, MURALE D P, KIM Y K, et al. Crosstalk between oxidative stress and tauopathy[J]. Int J Mol Sci, 2019, 20(8): E1959. |
| [50] | MEANS J C, LOPEZ A A, KOULEN P. Resveratrol protects optic nerve head astrocytes from oxidative stress-induced cell death by preventing caspase-3 activation, tau dephosphorylation at Ser422 and formation of misfolded protein aggregates[J]. Cell Mol Neurobiol, 2020, 40(6): 911-926. |
| [51] | PRASAD H, RAO R. Endosomal acid-base homeostasis in neurodegenerative diseases[J]. Rev Physiol Biochem Pharmacol, 2023, 185: 195-231. |
| [52] | XU X D, TENG Y, ZOU J Y, et al. Effects of lycopene on vascular remodeling through the LXR-PI3K-AKT signaling pathway in APP/PS1 mice[J]. Biochem Biophys Res Commun, 2020, 526(3): 699-705. |
| [53] | LI Y, NI N, LEE M, et al. Endothelial leakiness elicited by amyloid protein aggregation[J]. Nat Commun, 2024, 15(1): 613. |
| [54] | ZHAO J, LANG M. New insight into protein glycosylation in the development of Alzheimer's disease[J]. Cell Death Discov, 2023, 9(1): 314. |
| [55] | VERSELE R, SEVIN E, GOSSELET F, et al. TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model[J]. Int J Mol Sci, 2022, 23(18): 10235. |
| [56] | ANDERSON G, MAZZOCCOLI G. Left ventricular hypertrophy: roles of mitochondria CYP1B1 and melatonergic pathways in co-ordinating wider pathophysiology[J]. Int J Mol Sci, 2019, 20(16): E4068. |
| [57] | BIR A, GHOSH A, CHAUHAN A, et al. Exosomal dynamics and brain redox imbalance: implications in Alzheimer's disease pathology and diagnosis[J]. Antioxidants (Basel), 2024, 13(3): 316. |
| [58] | ROEMER-CASSIANO S N, WAGNER F, EVANGELISTA L, et al. Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease[J]. Sci Transl Med, 2025, 17(782): eadp2564. |
| [59] | ROHNER M H, GEBHARD C, LUFT A, et al. Cardiac findings following cerebrovascular disease[J]. J Am Heart Assoc, 2024, 13(17): e034131. |
| [1] | 杨乐, 周怡, 王钶韵, 赖娅莉. 大黄素改善阿尔茨海默病认知障碍、内质网应激和神经炎症的研究[J]. 上海交通大学学报(医学版), 2025, 45(6): 727-734. |
| [2] | 马会华, 闫奎坡, 刘刚, 徐亚洲, 张磊, 孙彦琴. 肠道微生物群与心血管疾病的因果关系评价:双向孟德尔随机化分析[J]. 上海交通大学学报(医学版), 2025, 45(12): 1606-1619. |
| [3] | 秦梓豪, 袁洪, 陆瑶, 冷一铭. CD34+细胞异质性在心血管损伤与修复中的多重角色[J]. 上海交通大学学报(医学版), 2025, 45(12): 1662-1670. |
| [4] | 常桂丽, 刘常远, 李明春, 胡哲, 陈静, 操群安, 初少莉, 陈歆. 原发性高血压非肾素依赖性醛固酮与左心室肥厚的关系[J]. 上海交通大学学报(医学版), 2025, 45(10): 1372-1377. |
| [5] | 张迎迎, 张俊瑶, 宋际伟, 王声杰, 姚俊岩. 空气污染与阿尔茨海默病因果关联的两样本孟德尔随机化研究[J]. 上海交通大学学报(医学版), 2025, 45(1): 87-94. |
| [6] | 李萍, 蒋惠如, 叶梦月, 王雅玉, 陈潇雨, 袁安彩, 徐文杰, 戴慧敏, 陈曦, 闫小响, 涂圣贤, 郑元琦, 张薇, 卜军. 基于上海社区老年人群队列的心血管疾病和恶性肿瘤的危险因素流行特征分析[J]. 上海交通大学学报(医学版), 2024, 44(5): 617-625. |
| [7] | 孙慧, 金宏福, 郭沈睿, 冯奕源, 尹雅芙, 王辉, 程维维. 整合应激反应在阿尔茨海默病发病中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 755-760. |
| [8] | 蒋昕婷, 黄高忠. 营养干预对阿尔茨海默病相关认知障碍影响的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 788-794. |
| [9] | 谢欣宜, 周薇, 邱澈, 沈慧, 宋忠臣. 伴阿尔茨海默病牙周炎患者血清Th17/Treg相关细胞因子水平变化研究[J]. 上海交通大学学报(医学版), 2023, 43(5): 600-605. |
| [10] | 杨子豪, 陈楠, 林偲蔚. 数字地形分析方法在大脑皮层形态研究中的应用[J]. 上海交通大学学报(医学版), 2023, 43(3): 342-349. |
| [11] | 何志洁, 何津春, 张燕培, 王耀东, 王占科. 基于垂直密度梯度离心全自动血脂谱检测法的家族性高三酰甘油血症家系血脂亚组分分析[J]. 上海交通大学学报(医学版), 2022, 42(4): 482-489. |
| [12] | 张彤, 田雪, 左颖婷, 郑曼琪, 张怡君, 吴寿岭, 陈朔华, 马高亭, 佟旭, 王安心, 莫大鹏. 无传统危险因素人群中TyG指数与心脑血管疾病的关系[J]. 上海交通大学学报(医学版), 2022, 42(3): 267-274. |
| [13] | 林祎嘉, 程丽珍, 苗雅. 线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 387-392. |
| [14] | 王毅, 程诚, 沈红艳, 高红艳, 戴悦宁, 易正辉. 经颅磁刺激对阿尔茨海默病患者认知功能及伴痴呆的行为精神症状疗效的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(7): 931-941. |
| [15] | 蔡明琪, 陈焱, 林开斌, 黄冬. 生长分化因子11在心血管疾病中的作用[J]. 上海交通大学学报(医学版), 2021, 41(6): 834-838. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||