
上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (2): 233-240.doi: 10.3969/j.issn.1674-8115.2021.02.017
收稿日期:2020-07-30
出版日期:2021-02-28
发布日期:2021-02-28
作者简介:黄原昕(1996—),女,硕士生;电子信箱:基金资助:
Yuan-xin HUANG(
), Dong-mei LAI(
)
Received:2020-07-30
Online:2021-02-28
Published:2021-02-28
Supported by:摘要:
蛋白质组学是现阶段生物医学研究的核心内容之一。其研究内容涵盖了对信号转导、细胞增殖分化、蛋白质翻译后修饰等生物过程的探索,以及对疾病分子标志物和药物靶标的寻找。该文概述了基于质谱的蛋白质组学技术在妇科常见疾病研究中的应用,包括在多囊卵巢综合征、早发性卵巢功能不全、卵巢癌、子宫内膜癌、宫颈癌的发病机制及生物标志物研究中的应用。
中图分类号:
黄原昕, 赖东梅. 蛋白质组学技术在妇科疾病研究中的应用[J]. 上海交通大学学报(医学版), 2021, 41(2): 233-240.
Yuan-xin HUANG, Dong-mei LAI. Application of proteomics to the study of gynecological diseases[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 233-240.
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| PCOS | Ovarian follicle | Alpha-1-antitrypsin,SERPINA1 | Protease inhibitor | [ |
| Inter-alpha-trypsin inhibitor heavy chain 4, ITIH4 | Protease inhibitor | [ | ||
| Mitogen-activated protein kinase kinase 4, MAPKK4 | Signal transduction | [ | ||
| Plasma | Apolipoprotein C3, APOC3 | Lipid metabolism | [ | |
| Serotransferrin | Iron metabolism | [ | ||
| Complement C3 | Complement activation | [ | ||
| Properdin | Complement activation | [ | ||
| Insulin-like growth factor II | Growth factor | [ |
表1 PCOS相关生物标志物
Tab 1 Biomarkers of PCOS
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| PCOS | Ovarian follicle | Alpha-1-antitrypsin,SERPINA1 | Protease inhibitor | [ |
| Inter-alpha-trypsin inhibitor heavy chain 4, ITIH4 | Protease inhibitor | [ | ||
| Mitogen-activated protein kinase kinase 4, MAPKK4 | Signal transduction | [ | ||
| Plasma | Apolipoprotein C3, APOC3 | Lipid metabolism | [ | |
| Serotransferrin | Iron metabolism | [ | ||
| Complement C3 | Complement activation | [ | ||
| Properdin | Complement activation | [ | ||
| Insulin-like growth factor II | Growth factor | [ |
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| POI | Ovarian follicle | Humanepididymisprotein 4,HE4/WFDC2 | Protease inhibitor | [ |
| Reticulocalbin-1/-3, RCN1/RCN3 | Calcium-binding protein | [ | ||
| Heterogeneous nuclear ribonucleoprotein K, HNRNPK | RNA binding protein | [ | ||
| Actin | Cytoskeleton component | [ | ||
| Major vault protein, MVP | Nucleo-cytoplasmic transport | [ | ||
| Plasma | Ceruloplasmin | Copper binding protein | [ | |
| Complement C3 | Complement activation | [ | ||
| Fibrinogen α/β | Blood coagulation | [ | ||
| Sex hormone-binding globulin, SHBG | Steroid binding protein | [ |
表2 POI相关生物标志物
Tab 2 Biomarkers of POI
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| POI | Ovarian follicle | Humanepididymisprotein 4,HE4/WFDC2 | Protease inhibitor | [ |
| Reticulocalbin-1/-3, RCN1/RCN3 | Calcium-binding protein | [ | ||
| Heterogeneous nuclear ribonucleoprotein K, HNRNPK | RNA binding protein | [ | ||
| Actin | Cytoskeleton component | [ | ||
| Major vault protein, MVP | Nucleo-cytoplasmic transport | [ | ||
| Plasma | Ceruloplasmin | Copper binding protein | [ | |
| Complement C3 | Complement activation | [ | ||
| Fibrinogen α/β | Blood coagulation | [ | ||
| Sex hormone-binding globulin, SHBG | Steroid binding protein | [ |
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| Ovarian cancer | Tumor tissue | Phosphoglucomutase 1, PGM1 | Glycogen metabolism | [ |
| Nicotinamide N-methyltransferase, NNMT | N-methylation | [ | ||
| Cancer/testis antigen 45, CT45 | - | [ | ||
| Thioredoxin domain-containing protein 17, TXNDC17 | - | [ |
表3 卵巢癌相关生物标志物
Tab 3 Biomarkers of ovarian cancer
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| Ovarian cancer | Tumor tissue | Phosphoglucomutase 1, PGM1 | Glycogen metabolism | [ |
| Nicotinamide N-methyltransferase, NNMT | N-methylation | [ | ||
| Cancer/testis antigen 45, CT45 | - | [ | ||
| Thioredoxin domain-containing protein 17, TXNDC17 | - | [ |
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| EC | Plasma | Prolactin, PRL | Hormone | [ |
| Follicle-stimulating hormone, FSH | Hormone | [ | ||
| Complement C3,complement C4A | Complement activation | [ | ||
| Urine | Cadherin-1, CDH1 | Cell migration and adhesion | [ | |
| Vitronectin, VTN | Cell migration and adhesion | [ | ||
| Heparan sulphate proteoglycan 2,HSPG2 | Cell migration and adhesion | [ | ||
| Uterine aspirates | Capping actin protein, CAPG | Cytoskeleton | [ | |
| Chromosome segregation 1 like, CSE1L | Apoptosis | [ | ||
| Catenin beta 1, CTNB1 | Signaling pathway | [ | ||
| Tumor tissue | Carbonic anhydrase 1, CAH1 | Reversible hydration of carbon dioxide | [ | |
| Peptidylprolyl isomerase B, PPIB | Cyclosporine-binding protein | [ | ||
| Lectin galactoside-binding soluble 3 binding protein, LGALS3BP | Cell adhesion | [ |
表4 EC相关生物标志物
Tab 4 Biomarkers of EC
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| EC | Plasma | Prolactin, PRL | Hormone | [ |
| Follicle-stimulating hormone, FSH | Hormone | [ | ||
| Complement C3,complement C4A | Complement activation | [ | ||
| Urine | Cadherin-1, CDH1 | Cell migration and adhesion | [ | |
| Vitronectin, VTN | Cell migration and adhesion | [ | ||
| Heparan sulphate proteoglycan 2,HSPG2 | Cell migration and adhesion | [ | ||
| Uterine aspirates | Capping actin protein, CAPG | Cytoskeleton | [ | |
| Chromosome segregation 1 like, CSE1L | Apoptosis | [ | ||
| Catenin beta 1, CTNB1 | Signaling pathway | [ | ||
| Tumor tissue | Carbonic anhydrase 1, CAH1 | Reversible hydration of carbon dioxide | [ | |
| Peptidylprolyl isomerase B, PPIB | Cyclosporine-binding protein | [ | ||
| Lectin galactoside-binding soluble 3 binding protein, LGALS3BP | Cell adhesion | [ |
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| CC | Cervical vaginal fluid | α-actin-4, ACTN4 | Cytoskeleton | [ |
| Vitronectin, VTN | Cell migration and adhesion | [ | ||
| Annexin A1/A2, ANXA1/A2 | Cell migration and adhesion | [ | ||
| Plasma | Orosomucoid 2, ORM2 | Acute inflammation | [ | |
| Haptoglobin-related protein, HPR | Acute inflammation | [ | ||
| Coagulation factor Ⅸ, F9 | Blood coagulation | [ | ||
| Complement factor I, CFI | Blood coagulation | [ |
表5 CC相关生物标志物
Tab 5 Biomarkers of CC
| Disease | Sample | Biomarker | Molecular function | Reference |
|---|---|---|---|---|
| CC | Cervical vaginal fluid | α-actin-4, ACTN4 | Cytoskeleton | [ |
| Vitronectin, VTN | Cell migration and adhesion | [ | ||
| Annexin A1/A2, ANXA1/A2 | Cell migration and adhesion | [ | ||
| Plasma | Orosomucoid 2, ORM2 | Acute inflammation | [ | |
| Haptoglobin-related protein, HPR | Acute inflammation | [ | ||
| Coagulation factor Ⅸ, F9 | Blood coagulation | [ | ||
| Complement factor I, CFI | Blood coagulation | [ |
| 1 | Tyers M, Mann M. From genomics to proteomics[J]. Nature, 2003, 422(6928): 193-197. |
| 2 | Swiatly A, Plewa S, Matysiak J, et al. Mass spectrometry-based proteomics techniques and their application in ovarian cancer research[J]. J Ovarian Res, 2018, 11(1): 88. |
| 3 | Collins BC, Hunter CL, Liu YS, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry[J]. Nat Commun, 2017, 8(1): 291. |
| 4 | Larance M, Lamond AI. Multidimensional proteomics for cell biology[J]. Nat Rev Mol Cell Biol, 2015, 16(5): 269-280. |
| 5 | Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry: from bench to bedside[J]. Biochim Biophys Acta Proteins Proteom, 2017, 1865(7): 776-783. |
| 6 | Galazis N, Afxentiou T, Xenophontos M, et al. Proteomic biomarkers of type 2 diabetes mellitus risk in women with polycystic ovary syndrome[J]. Eur J Endocrinol, 2013, 168(2): R33-R43. |
| 7 | Ambekar AS, Kelkar DS, Pinto SM, et al. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development[J]. J Clin Endocrinol Metab, 2015, 100(2): 744-753. |
| 8 | Patil K, Yelamanchi S, Kumar M, et al. Quantitative mass spectrometric analysis to unravel glycoproteomic signature of follicular fluid in women with polycystic ovary syndrome[J]. PLoS One, 2019, 14(4): e0214742. |
| 9 | Lan CW, Chen MJ, Tai KY, et al. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling[J]. Sci Rep, 2015, 5: 14994. |
| 10 | Amjadi F, Mehdizadeh M, Ashrafi M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women[J]. Reprod Biomed Online, 2018, 37(2): 184-200. |
| 11 | Li L, Zhang J, Zeng J, et al. Proteomics analysis of potential serum biomarkers for insulin resistance in patients with polycystic ovary syndrome[J]. Int J Mol Med, 2020, 45(5): 1409-1416. |
| 12 | Fazilat A, Rashid N, Nigam A, et al. Differential expression of MARK4 protein and related perturbations in females with ovulatory PCOS[J]. Endocr Metab Immune Disord Drug Targets, 2019, 19(7): 1064-1074. |
| 13 | Arffman RK, Saraswat M, Joenväärä S, et al. Thromboinflammatory changes in plasma proteome of pregnant women with PCOS detected by quantitative label-free proteomics[J]. Sci Rep, 2019, 9(1): 17578. |
| 14 | Nelson LM. Primary ovarian insufficiency[J]. N Engl J Med, 2009, 360(6): 606-614. |
| 15 | Liu X, Wang Y, Zhu P, et al. Human follicular fluid proteome reveals association between overweight status and oocyte maturation abnormality[J]. Clin Proteomics, 2020, 17: 22. |
| 16 | Xu M, Che L, Yang Z, et al. Proteomic analysis of fetal ovaries reveals that primordial follicle formation and transition are differentially regulated[J]. Biomed Res Int, 2017, 2017: 6972030. |
| 17 | Lee DH, Pei CZ, Song JY, et al. Identification of serum biomarkers for premature ovarian failure[J]. Biochim Biophys Acta Proteins Proteom, 2019, 1867(3): 219-226. |
| 18 | Zhang H, Liu T, Zhang Z, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer[J]. Cell, 2016, 166(3): 755-765. |
| 19 | Hüttenhain R, Choi M, Martin de la Fuente L, et al. A targeted mass spectrometry strategy for developing proteomic biomarkers: a case study of epithelial ovarian cancer[J]. Mol Cell Proteomics, 2019, 18(9): 1836-1850. |
| 20 | Dieters-Castator DZ, Rambau PF, Kelemen LE, et al. Proteomics-derived biomarker panel improves diagnostic precision to classify endometrioid and high-grade serous ovarian carcinoma[J]. Clin Cancer Res, 2019, 25(14): 4309-4319. |
| 21 | Curtis M, Kenny HA, Ashcroft B, et al. Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis[J]. Cell Metab, 2019, 29(1): 141-155.e9. |
| 22 | Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts[J]. Nature, 2019, 569(7758): 723-728. |
| 23 | Everest-Dass AV, Briggs MT, Kaur G, et al. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues[J]. Mol Cell Proteomics, 2016, 15(9): 3003-3016. |
| 24 | Coscia F, Lengyel E, Duraiswamy J, et al. Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer[J]. Cell, 2018, 175(1): 159-170.e16. |
| 25 | Zhang SF, Wang XY, Fu ZQ, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer[J]. Autophagy, 2015, 11(2): 225-238. |
| 26 | Njoku K, Chiasserini D, Whetton AD, et al. Proteomic biomarkers for the detection of endometrial cancer[J]. Cancers, 2019, 11(10): 1572. |
| 27 | Martinez-Garcia E, Lopez-Gil C, Campoy I, et al. Advances in endometrial cancer protein biomarkers for use in the clinic[J]. Expert Rev Proteomics, 2018, 15(1): 81-99. |
| 28 | Tarney CM, Wang G, Bateman NW, et al. Biomarker panel for early detection of endometrial cancer in the prostate, lung, colorectal, and Ovarian cancer screening trial[J]. Am J Obstet Gynecol, 2019, 221(5): 472.e1-472.e10. |
| 29 | Kacírová M, Bober P, Alexovič M, et al. Differential urinary proteomic analysis of endometrial cancer[J]. Physiol Res, 2019, 68(): S483-S490. |
| 30 | Mu AK, Lim BK, Aminudin N, et al. Application of SELDI-TOF in N-glycopeptides profiling of the urine from patients with endometrial, ovarian and cervical cancer[J]. Arch Physiol Biochem, 2016, 122(3): 111-116. |
| 31 | Martinez-Garcia E, Lesur A, Devis L, et al. Targeted proteomics identifies proteomic signatures in liquid biopsies of the endometrium to diagnose endometrial cancer and assist in the prediction of the optimal surgical treatment[J]. Clin Cancer Res, 2017, 23(21): 6458-6467. |
| 32 | Ceylan Y, Akpınar G, Doger E, et al. Proteomic analysis in endometrial cancer and endometrial hyperplasia tissues by 2D-DIGE technique[J]. J Gynecol Obstet Hum Reprod, 2020, 49(2): 101652. |
| 33 | Tota JE, Ramana-Kumar AV, El-Khatib Z, et al. The road ahead for cervical cancer prevention and control[J]. Curr Oncol, 2014, 21(2): e255-e264. |
| 34 | Arbyn M, Verdoodt F, Snijders PJF, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis[J]. Lancet Oncol, 2014, 15(2): 172-183. |
| 35 | Starodubtseva NL, Brzhozovskiy AG, Bugrova AE, et al. Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation[J]. J Mass Spectrom, 2019, 54(8): 693-703. |
| 36 | 邱峰, 陈富, 刘冬冬, 等. 基于LC-MS/MS筛选宫颈病变和宫颈癌发生和发展过程中的新型蛋白标志物[J]. 南方医科大学学报, 2019, 39(1): 13-22. |
| 37 | Padilla-Mendoza JR, Contis-Montes de Oca A, Rodríguez MA, et al. Protein phosphorylation in serine residues correlates with progression from precancerous lesions to cervical cancer in Mexican patients[J]. Biomed Res Int, 2020, 2020: 1-11. |
| [1] | 刘佳, 任灵杰, 施敏敏, 唐笑梅, 马芳芳, 秦洁洁. COL12A作为一种新型的胰腺导管腺癌血清诊断标志物的鉴定与评价[J]. 上海交通大学学报(医学版), 2025, 45(10): 1342-1352. |
| [2] | 韦柳彤, 赖东梅. 慢性应激与卵巢功能减退的相关性研究进展[J]. 上海交通大学学报(医学版), 2024, 44(12): 1601-1606. |
| [3] | 周婉桢, 滕银成. 非经典Wnt通路在卵巢癌中的作用与潜在治疗意义研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1056-1063. |
| [4] | 王雪敏, 王亚楠, 牛爱琴, 叶英, 李飞. 微RNA-30b-5p通过靶向Atg5抑制多囊卵巢综合征大鼠卵巢颗粒细胞自噬[J]. 上海交通大学学报(医学版), 2023, 43(1): 20-28. |
| [5] | 宣贝贝, 龚赛楠, 刘佳丽, 全权, 孟雨, 牟晓玲. DNA聚合酶θ在子宫内膜癌中的表达及其临床意义[J]. 上海交通大学学报(医学版), 2021, 41(9): 1207-1214. |
| [6] | 王昱欢, 丁奕岑, 蔡瑶雨, 康亚妮. 差异表达微RNA作为多囊卵巢综合征生物标志物的研究[J]. 上海交通大学学报(医学版), 2021, 41(11): 1429-1435. |
| [7] | 殷倩, 滕银成. MMRd相关子宫内膜癌分型及治疗进展[J]. 上海交通大学学报(医学版), 2021, 41(11): 1509-1513. |
| [8] | 杨卓一, 陈会, 白思益, 帕梅拉·帕尔哈提null, 侯敬丽, 袁运生. 伴刀豆球蛋白A诱导肝细胞损伤的磷酸化蛋白质组学研究[J]. 上海交通大学学报(医学版), 2021, 41(1): 1-7. |
| [9] | 熊强强, 屠俊, 李郡如, 程金科, 左建宏, 陈亚兰. 蛋白质SUMO化修饰的蛋白质组学研究述评[J]. 上海交通大学学报(医学版), 2021, 41(1): 89-94. |
| [10] | 蒋毅弘,廖 宇,岳 江,黄 融,刘 伟. 基于蛋白芯片技术的多囊卵巢综合征患者卵泡液差异蛋白的研究[J]. 上海交通大学学报(医学版), 2020, 40(8): 1048-1054. |
| [11] | 建方方1,车晓霞2,冯炜炜1. 子宫内膜癌中长链非编码RNA表达谱的生物信息学分析[J]. 上海交通大学学报(医学版), 2020, 40(6): 768-775. |
| [12] | 高境泽,吴 霞. 卵巢肿瘤组织中CXCL9 mRNA表达与患者的预后、免疫微环境特征的相关性研究[J]. 上海交通大学学报(医学版), 2020, 40(4): 457-. |
| [13] | 米红兰1,程杰军1,殷 霞2,朱 莉1,林 聪1,路 青1. 体素不相干运动与动态对比增强磁共振成像在评估早期宫颈癌淋巴脉管浸润状态中的应用[J]. 上海交通大学学报(医学版), 2020, 40(2): 224-. |
| [14] | 沈 偲,滕银成. 子宫内膜癌孕激素耐药机制及新型疗法的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(12): 1677-1682. |
| [15] | 储维薇,徐洁颖,李尚,翟君钰,杜艳芝. 脱氢表雄酮诱导的多囊卵巢综合征模型大鼠的肠道菌群研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 975-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||