上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (6): 819-824.doi: 10.3969/j.issn.1674-8115.2022.06.018
• 综述 • 上一篇
收稿日期:
2022-03-01
接受日期:
2022-06-22
出版日期:
2022-06-28
发布日期:
2022-08-19
通讯作者:
陈云丰
E-mail:echo007@sjtu.edu.cn;drchenyunfeng@sina.com;chenyf@sjtu.edu.cn
作者简介:
骆智渊(1998—),男,硕士生;电子信箱:echo007@sjtu.edu.cn。
基金资助:
LUO Zhiyuan(), SHI Tingwang, RUAN Zesong, CHEN Yunfeng()
Received:
2022-03-01
Accepted:
2022-06-22
Online:
2022-06-28
Published:
2022-08-19
Contact:
CHEN Yunfeng
E-mail:echo007@sjtu.edu.cn;drchenyunfeng@sina.com;chenyf@sjtu.edu.cn
Supported by:
摘要:
抗生素耐药危机是全球公共卫生中最紧迫的问题之一。为了解决细菌对抗生素的耐药危机,近年来越来越多的生物纳米材料被应用于抗菌领域。纳米颗粒(nanoparticles,NPs)是一类大小在纳米尺度的材料,与传统抗菌药物相比具有独特的优势,但NPs应用于人体依然面临靶向性不高以及对其他组织脏器的损害问题。靶向治疗除了能提高疗效外,还允许使用较低浓度的高毒性药物,从而减少药物毒性和健康组织的不良反应,因此如何提高NPs对细菌的靶向性,是当今医疗卫生领域面临的重要问题。该文首先对NPs做一概述,然后从表面功能化、环境响应和细胞膜仿生修饰3种常用的细菌靶向策略出发,介绍其基本机制及最新研究成果,并总结每种策略的优劣势以及未来主要的发展方向,以期提供该领域发展情况的大略图景,为抗菌药物的靶向治疗策略提供新的思路。
中图分类号:
骆智渊, 石亭旺, 阮泽松, 陈云丰. 基于纳米颗粒靶向细菌的策略及机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 819-824.
LUO Zhiyuan, SHI Tingwang, RUAN Zesong, CHEN Yunfeng. Reaearch progress of strategies and mechanisms of targeting bacteria based on nanoparticles[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 819-824.
Category | Advantages | Disadvantages |
---|---|---|
Surface modification | High targeting efficiency,various forms | Short circulation, safety problems |
Stimuli-responsive | Diverse conditions, simpler and more reproducible | Technology limitations to provide stimulus |
Biomimetic modification of cell membrane | Prolonged circulation time, cell-specific targeting, detoxification | Technological complexity, lack of raw materials |
表1 不同靶向策略优劣势的比较
Tab 1 Advantages and disadvantages of different targeting strategies
Category | Advantages | Disadvantages |
---|---|---|
Surface modification | High targeting efficiency,various forms | Short circulation, safety problems |
Stimuli-responsive | Diverse conditions, simpler and more reproducible | Technology limitations to provide stimulus |
Biomimetic modification of cell membrane | Prolonged circulation time, cell-specific targeting, detoxification | Technological complexity, lack of raw materials |
1 | NAYLOR N R, ATUN R, ZHU N N, et al. Estimating the burden of antimicrobial resistance: a systematic literature review[J]. Antimicrob Resist Infect Control, 2018, 7: 58. |
2 | BAPTISTA P V, MCCUSKER M P, CARVALHO A, et al. Nano-strategies to fight multidrug resistant bacteria-“A battle of the titans”[J]. Front Microbiol, 2018, 9: 1441. |
3 | MILLER K P, WANG L, BENICEWICI B C, et al. Inorganic nanoparticles engineered to attack bacteria[J]. Chem Soc Rev, 2015. 44(21): 7787-7807. |
4 | PAUL E. Chemotherapeutische trypanosomen-studien[J]. Berliner Klinische Wochenschrift, 1907, 44: 233-236. |
5 | GUIDO C, MAIORANO G, CORTESE B, et al. Biomimetic nanocarriers for cancer target therapy[J]. Bioengineering (Basel), 2020, 7(3): 111. |
6 | LI J L, CHEN C Y, XIA T. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications[J]. Adv Mater, 2022, 34(11): e2106456. |
7 | WANG W, LI P F, XIE R, et al. Designable micro-/ nano-structured smart polymeric materials[J]. Adv Mater, 2021: e2107877. DOI: 10.1002/adma.202107877. |
8 | NATAN M, BANIN E. From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 302-322. |
9 | YIN I X, ZHANG J, ZHAO I S, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562. |
10 | DONG X L, LIANG W X, MEZIANI M J, et al. Carbon dots as potent antimicrobial agents[J]. Theranostics, 2020, 10(2): 671-686. |
11 | AUGUSTINE R, KALVA N, KIM H N, et al. PH-responsive polypeptide-based smart nano-carriers for theranostic applications[J]. Molecules, 2019, 24: 2961. |
12 | LANDIS R F, GUPTA A, LEE Y W, et al. Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms[J]. ACS Nano, 2017, 11(1): 946-952. |
13 | MAKABENTA J M V, NABAWY A, LI C H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36. |
14 | ZHANG J L, XIANG Q Q, SHEN L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae[J]. Chemosphere, 2020, 247: 125936. |
15 | LAM S J, O'BRIEN-SIMPSON N M, PANTARAT N, et al. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162. |
16 | HUO S D, JIANG Y, GUPTA A, et al. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure[J]. ACS Nano, 2016, 10(9): 8732-8737. |
17 | ELBOURNE A, CHEESEMAN S, ATKIN P, et al. Antibacterial liquid metals: biofilm treatment via magnetic activation[J]. ACS Nano, 2020, 14(1): 802-817. |
18 | JIN K, LUO Z M, ZHANG B, et al. Biomimetic nanoparticles for inflammation targeting[J]. Acta Pharm Sin B, 2018, 8(1): 23-33. |
19 | WANG H J, SONG Z Y, LI S J, et al. One stone with two birds: functional gold nanostar for targeted combination therapy of drug-resistant Staphylococcus aureus infection[J]. ACS Appl Mater Interfaces, 2019, 11(36): 32659-32669. |
20 | KANG S, PARK T, CHEN X Y, et al. Tunable physiologic interactions of adhesion molecules for inflamed cell-selective drug delivery[J]. Biomaterials, 2011, 32(13): 3487-3498. |
21 | LEHAR S M, PILLOW T, XU M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328. |
22 | GALANZHA E I, SHASHKOV E, SARIMOLLAOGLU M, et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles[J]. PLoS One, 2012, 7(9): e45557. |
23 | CHEN L F, XING S H, LEI Y L, et al. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23534-23539. |
24 | YATVIN M B, WEINSTEIN J N, DENNIS W H, et al. Design of liposomes for enhanced local release of drugs by hyperthermia[J]. Science, 1978, 202(4374): 1290-1293. |
25 | AMOLI-DIVA M, SADIGHI-BONABI R, POURGHAZI K. Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76: 536-542. |
26 | MEEKER D G, JENKINS S V, MILLER E K, et al. Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs[J]. ACS Infect Dis, 2016, 2(4): 241-250. |
27 | BORZENKOV M, MOROS M, TORTIGLIONE C, et al. Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications[J]. Beilstein J Nanotechnol, 2018, 9: 2040-2048. |
28 | MOHAPATRA A, HARRIS M A, LEVINE D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(6): 2169-2176. |
29 | GEILICH B M, GELFAT I, SRIDHAR S, et al. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication[J]. Biomaterials, 2017, 119: 78-85. |
30 | HARRIS M, AHMED H, BARR B, et al. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release[J]. Int J Biol Macromol, 2017, 104(Pt B): 1407-1414. |
31 | DAS S S, BHARADWAJ P, BILAL M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis[J]. Polymers, 2020, 12(6): 1397. |
32 | WU J H, LI F Y, HU X, et al. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections[J]. ACS Cent Sci, 2019, 5(8): 1366-1376. |
33 | KALHAPURE R S, JADHAV M, RAMBHAROSE S, et al. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin[J]. Colloids Surf B Biointerfaces, 2017, 158: 650-657. |
34 | WU Y, SONG Z Y, WANG H J, et al. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections[J]. Nat Commun, 2019, 10(1): 4464. |
35 | DONG X Y, ZHANG C Y, JIN G, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther (Weinh), 2019, 2(11): 1900095. |
36 | MA B X, XU H, ZHUANG W H, et al. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation[J]. ACS Nano, 2020, 14(5): 5862-5873. |
37 | WANG Z, LIU X Y, DUAN Y W, et al. Infection microenvironment-related antibacterial nanotherapeutic strategies[J]. Biomaterials, 2022, 280: 121249. |
38 | LI L L, XU J H, QI G B, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983. |
39 | CHEN M H, XIE S Z, WEI J J, et al. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36814-36823. |
40 | CANAPARO R, FOGLIETTA F, GIUNTINI F, et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles[J]. Molecules, 2019, 24(10): 1991. |
41 | HU C M J, ZHANG L, ARYAL S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci USA, 2011, 108(27): 10980-10985. |
42 | WANG K Y, LEI Y T, XIA D L, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surf B Biointerfaces, 2020, 188: 110755. |
43 | WANG C, WANG Y L, ZHANG L L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023. |
44 | WEI X L, RAN D N, CAMPEAU A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769. |
45 | HU Q Y, SUN W J, QIAN C G, et al. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy[J]. Adv Mater, 2017, 29(13): 1605803. |
46 | GAO F, XU L L, YANG B Q, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227. |
47 | DEHAINI D, WEI X L, FANG R H, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209. |
48 | LI J, ANGSANTIKUL P, LIU W, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI:10.1002/adma.201704800. |
49 | MOLINARO R, CORBO C, MARTINEZ J O, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues[J]. Nat Mater, 2016, 15(9): 1037-1046. |
50 | BOROVIČKA J, METHERINGHAM W J, MADDEN L A, et al. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms[J]. J Am Chem Soc, 2013, 135(14): 5282-5285. |
51 | DALLE VEDOVE E, COSTABILE G, MERKEL O M. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy[J]. Adv Healthc Mater, 2018, 7(14): e1701398. |
52 | PI J, SHEN L, YANG E Z, et al. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli[J]. Angew Chem Int Ed Engl, 2020, 59(8): 3226-3234. |
53 | PI J, SHEN L, SHEN H B, et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109777. |
[1] | 李瑞, 韩雨洁, 张蕾, 唐玉杰. 弥漫内生性脑桥胶质瘤靶向治疗新策略的体外筛选与验证[J]. 上海交通大学学报(医学版), 2021, 41(8): 987-998. |
[2] | 石亭旺, 陈云丰. 细胞膜包被纳米颗粒的制备及其在抗菌中的应用[J]. 上海交通大学学报(医学版), 2021, 41(7): 953-958. |
[3] | 张佳玲, 张凤春, 徐迎春. 乳腺癌脑转移系统治疗的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(5): 671-677. |
[4] | 来亚男, 姚玉峰, 郭晓奎, 倪进婧. 乙酰化修饰在影响细菌对核糖体靶向抗生素敏感性中的作用[J]. 上海交通大学学报(医学版), 2021, 41(3): 308-313. |
[5] | 李 超,糜坚青,王 瑾. 费城染色体样急性淋巴细胞白血病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1294-1301. |
[6] | 李 倩,高境泽,李 云,宋 堃,沈倩诚. 食管鳞状细胞癌基因组芯片生物信息学分析及靶向药物预测[J]. 上海交通大学学报(医学版), 2020, 40(2): 194-. |
[7] | 吴 迪,齐 隽. 介孔硅基活性氧可控释放纳米体系及其抗肿瘤应用进展[J]. 上海交通大学学报(医学版), 2019, 39(11): 1329-. |
[8] | 颜春1,马玉洁2,谢玮岳1,杨庆源3,孙奋勇3,杨志2,薛松1,连锋1. 球形金纳米颗粒对骨髓间充质干细胞自噬流和外泌体分泌的影响[J]. 上海交通大学学报(医学版), 2018, 38(1): 42-. |
[9] | 杨丽君,李牛,刘毅,王剑 . 基于靶向基因测序的原发性免疫缺陷病基因诊断方法[J]. 上海交通大学学报(医学版), 2017, 37(3): 390-. |
[10] | 薛晓梅,曹惠敏,尤纱纱,何斌. 纳米载药系统在心肌缺血治疗中的应用[J]. 上海交通大学学报(医学版), 2016, 36(9): 1356-. |
[11] | 胡燕,高艳虹. 雌激素类药物骨靶向性治疗骨质疏松的研究进展[J]. 上海交通大学学报(医学版), 2016, 36(3): 437-. |
[12] | 张琳袁,张明,达骏. mTOR抑制剂依维莫司在肾细胞癌治疗中的应用[J]. 上海交通大学学报(医学版), 2016, 36(12): 1812-. |
[13] | 李晓钰,杜晶,杨仕平,等. 携抗HER2抗体和抗VEGFR2抗体聚乳酸羟基乙酸双靶向纳米高分子超声造影剂制备及体外实验研究[J]. 上海交通大学学报(医学版), 2016, 36(1): 23-. |
[14] | 朱雪茹,郑磊贞. HGF/c-Met与胃癌靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2016, 36(1): 133-. |
[15] | 成 康,孙福康. PI3K/AKT/mTOR信号转导途径在嗜铬细胞瘤发生和发展中的作用及其联合靶向治疗[J]. 上海交通大学学报(医学版), 2015, 35(1): 137-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||