
上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (6): 819-824.doi: 10.3969/j.issn.1674-8115.2022.06.018
收稿日期:2022-03-01
接受日期:2022-06-22
出版日期:2022-06-28
发布日期:2022-08-19
通讯作者:
陈云丰,电子信箱:chenyf@sjtu.edu.cn。作者简介:骆智渊(1998—),男,硕士生;电子信箱:echo007@sjtu.edu.cn。
基金资助:
LUO Zhiyuan(
), SHI Tingwang, RUAN Zesong, CHEN Yunfeng(
)
Received:2022-03-01
Accepted:2022-06-22
Online:2022-06-28
Published:2022-08-19
Contact:
CHEN Yunfeng, E-mail: drchenyunfeng@sina.com.Supported by:摘要:
抗生素耐药危机是全球公共卫生中最紧迫的问题之一。为了解决细菌对抗生素的耐药危机,近年来越来越多的生物纳米材料被应用于抗菌领域。纳米颗粒(nanoparticles,NPs)是一类大小在纳米尺度的材料,与传统抗菌药物相比具有独特的优势,但NPs应用于人体依然面临靶向性不高以及对其他组织脏器的损害问题。靶向治疗除了能提高疗效外,还允许使用较低浓度的高毒性药物,从而减少药物毒性和健康组织的不良反应,因此如何提高NPs对细菌的靶向性,是当今医疗卫生领域面临的重要问题。该文首先对NPs做一概述,然后从表面功能化、环境响应和细胞膜仿生修饰3种常用的细菌靶向策略出发,介绍其基本机制及最新研究成果,并总结每种策略的优劣势以及未来主要的发展方向,以期提供该领域发展情况的大略图景,为抗菌药物的靶向治疗策略提供新的思路。
中图分类号:
骆智渊, 石亭旺, 阮泽松, 陈云丰. 基于纳米颗粒靶向细菌的策略及机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 819-824.
LUO Zhiyuan, SHI Tingwang, RUAN Zesong, CHEN Yunfeng. Reaearch progress of strategies and mechanisms of targeting bacteria based on nanoparticles[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 819-824.
| Category | Advantages | Disadvantages |
|---|---|---|
| Surface modification | High targeting efficiency,various forms | Short circulation, safety problems |
| Stimuli-responsive | Diverse conditions, simpler and more reproducible | Technology limitations to provide stimulus |
| Biomimetic modification of cell membrane | Prolonged circulation time, cell-specific targeting, detoxification | Technological complexity, lack of raw materials |
表1 不同靶向策略优劣势的比较
Tab 1 Advantages and disadvantages of different targeting strategies
| Category | Advantages | Disadvantages |
|---|---|---|
| Surface modification | High targeting efficiency,various forms | Short circulation, safety problems |
| Stimuli-responsive | Diverse conditions, simpler and more reproducible | Technology limitations to provide stimulus |
| Biomimetic modification of cell membrane | Prolonged circulation time, cell-specific targeting, detoxification | Technological complexity, lack of raw materials |
| 1 | NAYLOR N R, ATUN R, ZHU N N, et al. Estimating the burden of antimicrobial resistance: a systematic literature review[J]. Antimicrob Resist Infect Control, 2018, 7: 58. |
| 2 | BAPTISTA P V, MCCUSKER M P, CARVALHO A, et al. Nano-strategies to fight multidrug resistant bacteria-“A battle of the titans”[J]. Front Microbiol, 2018, 9: 1441. |
| 3 | MILLER K P, WANG L, BENICEWICI B C, et al. Inorganic nanoparticles engineered to attack bacteria[J]. Chem Soc Rev, 2015. 44(21): 7787-7807. |
| 4 | PAUL E. Chemotherapeutische trypanosomen-studien[J]. Berliner Klinische Wochenschrift, 1907, 44: 233-236. |
| 5 | GUIDO C, MAIORANO G, CORTESE B, et al. Biomimetic nanocarriers for cancer target therapy[J]. Bioengineering (Basel), 2020, 7(3): 111. |
| 6 | LI J L, CHEN C Y, XIA T. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications[J]. Adv Mater, 2022, 34(11): e2106456. |
| 7 | WANG W, LI P F, XIE R, et al. Designable micro-/ nano-structured smart polymeric materials[J]. Adv Mater, 2021: e2107877. DOI: 10.1002/adma.202107877. |
| 8 | NATAN M, BANIN E. From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 302-322. |
| 9 | YIN I X, ZHANG J, ZHAO I S, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562. |
| 10 | DONG X L, LIANG W X, MEZIANI M J, et al. Carbon dots as potent antimicrobial agents[J]. Theranostics, 2020, 10(2): 671-686. |
| 11 | AUGUSTINE R, KALVA N, KIM H N, et al. PH-responsive polypeptide-based smart nano-carriers for theranostic applications[J]. Molecules, 2019, 24: 2961. |
| 12 | LANDIS R F, GUPTA A, LEE Y W, et al. Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms[J]. ACS Nano, 2017, 11(1): 946-952. |
| 13 | MAKABENTA J M V, NABAWY A, LI C H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36. |
| 14 | ZHANG J L, XIANG Q Q, SHEN L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae[J]. Chemosphere, 2020, 247: 125936. |
| 15 | LAM S J, O'BRIEN-SIMPSON N M, PANTARAT N, et al. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162. |
| 16 | HUO S D, JIANG Y, GUPTA A, et al. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure[J]. ACS Nano, 2016, 10(9): 8732-8737. |
| 17 | ELBOURNE A, CHEESEMAN S, ATKIN P, et al. Antibacterial liquid metals: biofilm treatment via magnetic activation[J]. ACS Nano, 2020, 14(1): 802-817. |
| 18 | JIN K, LUO Z M, ZHANG B, et al. Biomimetic nanoparticles for inflammation targeting[J]. Acta Pharm Sin B, 2018, 8(1): 23-33. |
| 19 | WANG H J, SONG Z Y, LI S J, et al. One stone with two birds: functional gold nanostar for targeted combination therapy of drug-resistant Staphylococcus aureus infection[J]. ACS Appl Mater Interfaces, 2019, 11(36): 32659-32669. |
| 20 | KANG S, PARK T, CHEN X Y, et al. Tunable physiologic interactions of adhesion molecules for inflamed cell-selective drug delivery[J]. Biomaterials, 2011, 32(13): 3487-3498. |
| 21 | LEHAR S M, PILLOW T, XU M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328. |
| 22 | GALANZHA E I, SHASHKOV E, SARIMOLLAOGLU M, et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles[J]. PLoS One, 2012, 7(9): e45557. |
| 23 | CHEN L F, XING S H, LEI Y L, et al. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23534-23539. |
| 24 | YATVIN M B, WEINSTEIN J N, DENNIS W H, et al. Design of liposomes for enhanced local release of drugs by hyperthermia[J]. Science, 1978, 202(4374): 1290-1293. |
| 25 | AMOLI-DIVA M, SADIGHI-BONABI R, POURGHAZI K. Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76: 536-542. |
| 26 | MEEKER D G, JENKINS S V, MILLER E K, et al. Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs[J]. ACS Infect Dis, 2016, 2(4): 241-250. |
| 27 | BORZENKOV M, MOROS M, TORTIGLIONE C, et al. Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications[J]. Beilstein J Nanotechnol, 2018, 9: 2040-2048. |
| 28 | MOHAPATRA A, HARRIS M A, LEVINE D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(6): 2169-2176. |
| 29 | GEILICH B M, GELFAT I, SRIDHAR S, et al. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication[J]. Biomaterials, 2017, 119: 78-85. |
| 30 | HARRIS M, AHMED H, BARR B, et al. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release[J]. Int J Biol Macromol, 2017, 104(Pt B): 1407-1414. |
| 31 | DAS S S, BHARADWAJ P, BILAL M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis[J]. Polymers, 2020, 12(6): 1397. |
| 32 | WU J H, LI F Y, HU X, et al. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections[J]. ACS Cent Sci, 2019, 5(8): 1366-1376. |
| 33 | KALHAPURE R S, JADHAV M, RAMBHAROSE S, et al. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin[J]. Colloids Surf B Biointerfaces, 2017, 158: 650-657. |
| 34 | WU Y, SONG Z Y, WANG H J, et al. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections[J]. Nat Commun, 2019, 10(1): 4464. |
| 35 | DONG X Y, ZHANG C Y, JIN G, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther (Weinh), 2019, 2(11): 1900095. |
| 36 | MA B X, XU H, ZHUANG W H, et al. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation[J]. ACS Nano, 2020, 14(5): 5862-5873. |
| 37 | WANG Z, LIU X Y, DUAN Y W, et al. Infection microenvironment-related antibacterial nanotherapeutic strategies[J]. Biomaterials, 2022, 280: 121249. |
| 38 | LI L L, XU J H, QI G B, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983. |
| 39 | CHEN M H, XIE S Z, WEI J J, et al. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36814-36823. |
| 40 | CANAPARO R, FOGLIETTA F, GIUNTINI F, et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles[J]. Molecules, 2019, 24(10): 1991. |
| 41 | HU C M J, ZHANG L, ARYAL S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci USA, 2011, 108(27): 10980-10985. |
| 42 | WANG K Y, LEI Y T, XIA D L, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surf B Biointerfaces, 2020, 188: 110755. |
| 43 | WANG C, WANG Y L, ZHANG L L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023. |
| 44 | WEI X L, RAN D N, CAMPEAU A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769. |
| 45 | HU Q Y, SUN W J, QIAN C G, et al. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy[J]. Adv Mater, 2017, 29(13): 1605803. |
| 46 | GAO F, XU L L, YANG B Q, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227. |
| 47 | DEHAINI D, WEI X L, FANG R H, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209. |
| 48 | LI J, ANGSANTIKUL P, LIU W, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI:10.1002/adma.201704800. |
| 49 | MOLINARO R, CORBO C, MARTINEZ J O, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues[J]. Nat Mater, 2016, 15(9): 1037-1046. |
| 50 | BOROVIČKA J, METHERINGHAM W J, MADDEN L A, et al. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms[J]. J Am Chem Soc, 2013, 135(14): 5282-5285. |
| 51 | DALLE VEDOVE E, COSTABILE G, MERKEL O M. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy[J]. Adv Healthc Mater, 2018, 7(14): e1701398. |
| 52 | PI J, SHEN L, YANG E Z, et al. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli[J]. Angew Chem Int Ed Engl, 2020, 59(8): 3226-3234. |
| 53 | PI J, SHEN L, SHEN H B, et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109777. |
| [1] | 孟靖, 谢玉婷, 左佳鑫, 熊屏. 纳米工程化T细胞体系的构建及其对口腔鳞状细胞癌的体外治疗研究[J]. 上海交通大学学报(医学版), 2025, 45(7): 866-873. |
| [2] | 潘抒凡, 杨栋磊, 王鹏飞. 基于纳米孔Cas9靶向测序的金黄色葡萄球菌快速检测与分型[J]. 上海交通大学学报(医学版), 2025, 45(6): 774-783. |
| [3] | 梁效宁, 石亭旺, 陈云丰. 小菌落变异株的致病机制及治疗研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 784-791. |
| [4] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [5] | 罗文, 吕明君, 张珍, 张雪, 姚志荣. 自噬在皮肤黑色素瘤中的双重效应及耐药中的作用研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 233-240. |
| [6] | 唐珺倩, 李本尚. 儿童高危细胞遗传学B系急性淋巴细胞白血病治疗新进展[J]. 上海交通大学学报(医学版), 2025, 45(10): 1390-1399. |
| [7] | 张勇, 李伟宏, 程志鹏, 王斌, 王思珩, 王毓斌. 受体相互作用蛋白激酶1调节癌症进展和免疫反应的研究现状[J]. 上海交通大学学报(医学版), 2024, 44(6): 788-794. |
| [8] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
| [9] | 丁艳玲, 李杰, 袁军, 李燕. 慢性淋巴细胞白血病靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 264-270. |
| [10] | 唐思洁, 糜坚青. 抗体药物偶联物在血液肿瘤中的临床应用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(12): 1607-1614. |
| [11] | 方馨悦, 石岚, 夏思易, 王佳璇, 吴英理, 何珂骏. Menin-MLL蛋白相互作用及相关抑制剂在MLL基因重排白血病中应用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1287-1298. |
| [12] | 周婉桢, 滕银成. 非经典Wnt通路在卵巢癌中的作用与潜在治疗意义研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1056-1063. |
| [13] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
| [14] | 徐瀛濂, 田静, 张翔, 赵顺英. 气道上皮细胞在哮喘发病机制中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 619-623. |
| [15] | 魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 624-630. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||