
上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (6): 825-832.doi: 10.3969/j.issn.1674-8115.2022.06.019
收稿日期:2022-03-02
接受日期:2022-06-01
出版日期:2022-06-28
发布日期:2022-08-19
通讯作者:
马 皎,电子信箱:drjiaoma@shsmu.edu.cn。作者简介:郑诗凡(1998—),女,硕士生;电子信箱:zhengshifan@sjtu.edu.cn。
基金资助:Received:2022-03-02
Accepted:2022-06-01
Online:2022-06-28
Published:2022-08-19
Contact:
MA Jiao, E-mail: drjiaoma@shsmu.edu.cn.Supported by:摘要:
无法彻底清除肿瘤干细胞(cancer stem cells,CSCs)被认为是肿瘤治疗过程中的一个巨大障碍。CSCs是一群存在于异质性肿瘤组织中的细胞亚群,它们具有自我更新和分化的潜能。作为一个功能性的概念,CSCs能够表现出启动肿瘤发生、抵抗放射治疗与化学治疗(化疗)以及导致肿瘤复发等恶性行为。有关CSCs多方面的研究已被陆续开展,包括特异性的细胞表面标志、自我更新信号通路以及表观遗传调控等,然而CSCs代谢却未得到足够的关注。基于现有的相关研究,该文综述了CSCs的能量和物质代谢特性,并从代谢角度探讨了CSCs在导致肿瘤治疗抗性与复发中的作用,同时还阐述了CSCs代谢与表观遗传调控的密切联系,并强调靶向CSCs代谢在肿瘤治疗中具有巨大的潜在价值。
中图分类号:
郑诗凡, 马皎. 肿瘤干细胞代谢在肿瘤发展中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 825-832.
ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832.
| 1 | KRESO A, DICK J E. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275-291. |
| 2 | LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. |
| 3 | BONNET D, DICK J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737. |
| 4 | AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988. |
| 5 | LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217. |
| 6 | O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110. |
| 7 | LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037. |
| 8 | KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6): 823-835. |
| 9 | MA S, CHAN K W, HU L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology, 2007, 132(7): 2542-2556. |
| 10 | HURT E M, KAWASAKI B T, KLARMANN G J, et al. CD44+ CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis[J]. Br J Cancer, 2008, 98(4): 756-765. |
| 11 | BATLLE E, CLEVERS H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134. |
| 12 | PRAGER B C, BHARGAVA S, MAHADEV V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends cancer, 2020, 6(3): 223-235. |
| 13 | POLLYEA D A, JORDAN C T. Therapeutic targeting of acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1627-1635. |
| 14 | YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8. |
| 15 | TOH T B, LIM J J, CHOW E K. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29. |
| 16 | WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. |
| 17 | PENG F, WANG J H, FAN W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1062-1074. |
| 18 | HUR W, RYU J Y, KIM H U, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133[J]. Sci Rep, 2017, 7: 45557. |
| 19 | LIU P P, LIAO J, TANG Z J, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135. |
| 20 | ZHOU Y, ZHOU Y, SHINGU T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853. |
| 21 | LAGADINOU E D, SACH A, CALLAHAN K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J]. Cell Stem Cell, 2013, 12(3): 329-341. |
| 22 | KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240. |
| 23 | VLASHI E, LAGADEC C, VERGNES L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci USA, 2011, 108(38):16062-16067. DOI: 10.1073/pnas.1106704108. |
| 24 | JANISZEWSKA M, SUVÀ M L, RIGGI N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells[J]. Genes Dev, 2012, 26(17): 1926-1944. |
| 25 | VALLE S, ALCALÁ S, MARTIN-HIJANO L, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells[J]. Nat Commun, 2020, 11(1): 5265. |
| 26 | LEE K M, GILTNANE J M, BALKO J M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation[J]. Cell Metab, 2017, 26(4): 633-647. |
| 27 | PASTÒ A, BELLIO C, PILOTTO G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319. |
| 28 | GUO B, HAN X, TKACH D, et al. AMPK promotes the survival of colorectal cancer stem cells[J]. Animal Model Exp Med, 2018, 1(2): 134-142. |
| 29 | VELLINGA T T, BOROVSKI T, DE B V C, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer[J]. Clin Cancer Res, 2015, 21(12): 2870-2879. |
| 30 | RAGGI C, TADDEI M L, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385. |
| 31 | SKRTIĆ M, SRISKANTHADEVAN S, JHAS B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia[J]. Cancer Cell, 2011, 20(5): 674-688. |
| 32 | MOLINA J R, SUN Y, PROTOPOPOVA M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability[J]. Nat Med, 2018, 24(7): 1036-1046. |
| 33 | BROWN J R, CHAN D K, SHANK J J, et al. Phase Ⅱ clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer[J]. JCI Insight, 2020, 5(11): e133247. |
| 34 | KORDES S, POLLAK M N, ZWINDERMAN A H, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Oncol, 2015, 16(7): 839-847. |
| 35 | SANCHO P, BURGOS-RAMOS E, TAVERA A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605. |
| 36 | SHIBAO S, MINAMI N, KOIKE N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3) :343-354. |
| 37 | ANDERSON A S, ROBERTS P C, FRISARD M I, et al. Ovarian tumor-initiating cells display a flexible metabolism[J]. Exp Cell Res, 2014, 328(1) :44-57. |
| 38 | LIU S, CONG Y, WANG D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014, 2(1): 78-91. |
| 39 | LUO M, SHANG L, BROOKS M D, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling[J]. Cell Metab, 2018, 28(1): 69-86.e6. |
| 40 | PEI S, MINHAJUDDIN M, ADANE B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells[J]. Cell Stem Cell, 2018, 23(1): 86-100.e6. |
| 41 | ADANE B, YE H, KHAN N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells[J]. Cell Rep, 2019, 27(1): 238-254.e6. |
| 42 | DINARDO C D, PRATZ K W, LETAI A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2018, 19(2): 216-228. |
| 43 | JONES C L, STEVENS B M, D'ALESSANDRO A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells[J]. Cancer Cell, 2018, 34(5): 724-740.e4. |
| 44 | NACHMIAS B, SCHIMMER A D. Metabolic flexibility in leukemia-adapt or die[J]. Cancer Cell, 2018, 34(5): 695-696. |
| 45 | DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. Am J Hematol, 2018, 93(3): 401-407. |
| 46 | YI M, LI J, CHEN S, et al. Emerging role of lipid metabolism alterations in cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 118. |
| 47 | YASUMOTO Y, MIYAZAKI H, VAIDYAN L K, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J]. PLoS One, 2016, 11(1): e0147717. |
| 48 | ZHOU C, QIAN W, MA J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1): e12514. |
| 49 | LI J, CONDELLO S, THOMES-PEPIN J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.e5. |
| 50 | CHEN L, REN J, YANG L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Sci Rep, 2016, 6: 19665. |
| 51 | GALBRAITH L, LEUNG H Y, AHMAD I. Lipid pathway deregulation in advanced prostate cancer[J]. Pharmacol Res, 2018, 131: 177-184. |
| 52 | ZHANG Q, YU S, LAM M M T, et al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2019, 38(1): 116. |
| 53 | EHMSEN S, PEDERSEN M H, WANG G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome[J]. Cell Rep, 2019, 27(13): 3927-3938.e6. |
| 54 | LI X, WU J B, LI Q, et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer[J]. Oncotarget, 2016, 7(11): 12869-12884. |
| 55 | PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1): 41. |
| 56 | SHLUSH L I, MITCHELL A, HEISLER L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells[J]. Nature, 2017, 547(7661): 104-108. |
| 57 | STEVENS B M, JONES C L, POLLYEA D A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020, 1(12): 1176-1187. |
| 58 | WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-150.e5. |
| 59 | JONES C L, STEVENS B M, POLLYEA D A, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020, 27(5): 748-764.e4. |
| 60 | YE H, ADANE B, KHAN N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. |
| 61 | HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637-4654. |
| 62 | ZHANG Z, HAN H, RONG Y, et al. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 291. |
| 63 | TÖNJES M, BARBUS S, PARK Y J, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908. |
| 64 | WANG Z Q, FADDAOUI A, BACHVAROVA M, et al. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism[J]. Oncotarget, 2015, 6(31): 31522-31543. |
| 65 | THEWES V, SIMON R, HLEVNJAK M, et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer[J]. Oncogene, 2017, 36(29): 4124-4134. |
| 66 | MAYERS J R, TORRENCE M E, DANAI L V, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers[J]. Science, 2016, 353(6304): 1161-1165. |
| 67 | HATTORI A, TSUNODA M, KONUMA T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504. |
| 68 | TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. |
| 69 | RAFFEL S, FALCONE M, KNEISEL N, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017, 551(7680): 384-388. |
| 70 | FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. |
| 71 | XU W, YANG H, LIU Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell, 2011, 19(1): 17-30. |
| 72 | LOSMAN J A, LOOPER R E, KOIVUNEN P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible[J]. Science, 2013, 339(6127): 1621-1625. |
| 73 | PASCHKA P, SCHLENK R F, GAIDZIK V I, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28(22): 3636-3643. |
| 74 | YEN K, TRAVINS J, WANG F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations[J]. Cancer Discov, 2017, 7(5): 478-493. |
| 75 | SHIH A H, MEYDAN C, SHANK K, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia[J]. Cancer Discov, 2017, 7(5): 494-505. |
| 76 | DINARDO C D, STEIN E M, DE B S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. |
| 77 | WANG Z, YIP L Y, LEE J H J, et al. Methionine is a metabolic dependency of tumor-initiating cells[J]. Nat Med, 2019, 25(5):825-837. |
| [1] | 朱子俊, 钱逸斐, 李倩玉, 李松玲, 覃雯莉, 刘艳丰. 后期促进复合体亚基10调控PI3K-AKT-mTOR通路促进肝细胞癌进展的研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1171-1182. |
| [2] | 杨全军, 柏丁源, 周雨萱, 白露, 郭澄. 异柠檬酸脱氢酶1突变介导D-2-羟基戊二酸代谢重编程在肿瘤免疫调控中的作用及相关药物研发进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1239-1248. |
| [3] | 黄昕, 刘家辉, 叶敬文, 钱文莉, 许万星, 王琳. 基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1009-1016. |
| [4] | 赛提尔古丽·克然木, 钱蕾, 丁思怡, 哈娜提·马合力木汗, 杨雪儿, 贾浩. 精氨酸代谢调控间充质干细胞功能的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 910-915. |
| [5] | 宋静, 姜烁, 万方煜, 李娟, 艾迪娜·木合塔, 闵新颖, 周婧琪. 膳食模式干预对代谢相关脂肪性肝病的影响与机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 926-933. |
| [6] | 黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 792-799. |
| [7] | 邹沛辰, 刘鸿宇, 阿衣娜扎尔·艾合买提, 朱亮, 唐亚斌, 雷绘敏. 索托拉西布获得性耐药肺癌细胞的代谢轮廓分析[J]. 上海交通大学学报(医学版), 2025, 45(2): 138-149. |
| [8] | 陈怀煌, 左武, 卞迁. CTCF调控小鼠AML12肝细胞系脂质代谢功能与基因表达[J]. 上海交通大学学报(医学版), 2024, 44(9): 1069-1082. |
| [9] | 蔡单, 黄晶. 非经典型多梳抑制复合物1.6的电镜结构分析[J]. 上海交通大学学报(医学版), 2024, 44(9): 1136-1145. |
| [10] | 吴望舒, 王旻洲, 宋阿会, 赵冰茹, 鲁嘉越, 洪文凯, 顾乐怡, 谢可炜, 陆任华. 复方氨基酸胶囊治疗维持性血液透析患者营养不良及钙磷代谢障碍的有效性和安全性[J]. 上海交通大学学报(医学版), 2024, 44(8): 1023-1029. |
| [11] | 许万星, 王琳, 郭巧梅, 王薛庆, 娄加陶. 多模态肺结节诊断模型的临床验证及应用价值探索[J]. 上海交通大学学报(医学版), 2024, 44(8): 1030-1036. |
| [12] | 夏西茜, 丁珂珂, 张慧恒, 彭旭飞, 孙昳旻, 唐雅珺, 汤晓芳. 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 839-846. |
| [13] | 邓青松, 张长青, 陶诗聪. 烟酰胺代谢相关基因与骨关节炎的关系探索[J]. 上海交通大学学报(医学版), 2024, 44(2): 145-160. |
| [14] | 吴丽蓉, 陈瑞华, 晁筱雯, 郭雨槐, 孙涛, 李梦慈, 陈天璐. 空腹血糖升高与认知功能恶化的代谢关联研究[J]. 上海交通大学学报(医学版), 2024, 44(2): 212-222. |
| [15] | 蒋莹, 李清瑶, 陈之琦, 汪佳璐, 李云, 徐仁应. 老年人群体质量指数与慢性代谢性疾病的关系[J]. 上海交通大学学报(医学版), 2024, 44(2): 250-257. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
