
上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (12): 1493-1506.doi: 10.3969/j.issn.1674-8115.2023.12.004
收稿日期:2023-04-17
接受日期:2023-11-09
出版日期:2023-12-28
发布日期:2024-02-01
通讯作者:
虞志华, 电子信箱: yuzhihua@shsmu.edu.cn。作者简介:沙旭栋(1998—),男,硕士生;电子信箱:ahmushaxudong@163.com。
基金资助:
SHA Xudong(
), WANG Chenfei, LU Jia, YU Zhihua(
)
Received:2023-04-17
Accepted:2023-11-09
Online:2023-12-28
Published:2024-02-01
Contact:
YU Zhihua, E-mail: yuzhihua@shsmu.edu.cn.Supported by:摘要:
目的·利用转录组以及脂质组分析技术研究瞬时受体电位香草素1型(transient receptor potential vanilloid type 1,TRPV1)通道的激活对高脂饮食诱导的小胶质细胞代谢的调控作用。方法·以8周龄C57BL/6J小鼠(WT)和Trpv1-/-(KO)小鼠为实验动物,高脂饲料(high-fat diet,HFD)分别喂养3d、7d、8周诱导造模(WT和KO组,n=3;WT-HFD和KO-HFD组,n=4)。通过免疫荧光试验测量WT-HFD和KO-HFD组小鼠大脑中TRPV1通道的表达以及细胞定位。通过RNA测序和液相色谱-质谱法确定WT-HFD和KO-HFD组小鼠的大脑表型。结果·与WT组小鼠相比,WT-HFD组小鼠体内小胶质细胞Trpv1 mRNA的表达水平显著增加。与WT-HFD组小鼠相比,KO-HFD组小鼠的脑脂质代谢、线粒体功能、葡萄糖转移以及糖酵解相关基因的表达水平下调。脂质组分析显示,虽然KO-HFD组小鼠的脑组织中脂质积累,但是Trpv1基因敲除减弱了HFD诱导的小胶质细胞活化,此外,TRPV1激动剂辣椒素在体外减弱棕榈酸诱导的线粒体膜电位去极化。结论·TRPV1通过线粒体驱动的燃料可用性机制调节小胶质细胞的脂质和葡萄糖代谢。
中图分类号:
沙旭栋, 王晨飞, 鲁佳, 虞志华. 瞬时受体电位香草素1型对高脂饮食诱导的小胶质细胞代谢的调控[J]. 上海交通大学学报(医学版), 2023, 43(12): 1493-1506.
SHA Xudong, WANG Chenfei, LU Jia, YU Zhihua. Regulation of high-fat diet-induced microglial metabolism by transient receptor potential vanilloid type 1[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1493-1506.
| Oligonucleotide | SOURCE | IDENTIFIER |
|---|---|---|
mouse trpv1 FWD: TGGCTCATATTTGCCTTCAG mouse trpv1 REV: CAGCCCTAGGAGTTGATFGA | Sango Biotech | N/A |
mouse ucp2 FWD: GCTGGTGGTTCGGAGAT mouse ucp2 REV: TGAAGTGGCAAGGGAGG | Sango Biotech | N/A |
mouse tnf-α FWD: CAGGAGGGAGAACAGAAACTCCA mouse tnf-α REV: CCTGGTTGGCTGCTT | Sango Biotech | N/A |
mouse il-1β FWD: GGAGGTGGTGATAGCCGGTAT mouse il-1β REV: TGGGTAATCCATAGAGCCCAG | Sango Biotech | N/A |
mouse gapdh FWD: TGATGGCAACAATCTCCAC mouse gapdh REV: CGTCCCGTAGACAAAATGGT | Sango Biotech | N/A |
表1 用于qRT-PCR的引物序列 (5'→3')
Tab 1 Primer sequences used for qRT-PCR (5'→3')
| Oligonucleotide | SOURCE | IDENTIFIER |
|---|---|---|
mouse trpv1 FWD: TGGCTCATATTTGCCTTCAG mouse trpv1 REV: CAGCCCTAGGAGTTGATFGA | Sango Biotech | N/A |
mouse ucp2 FWD: GCTGGTGGTTCGGAGAT mouse ucp2 REV: TGAAGTGGCAAGGGAGG | Sango Biotech | N/A |
mouse tnf-α FWD: CAGGAGGGAGAACAGAAACTCCA mouse tnf-α REV: CCTGGTTGGCTGCTT | Sango Biotech | N/A |
mouse il-1β FWD: GGAGGTGGTGATAGCCGGTAT mouse il-1β REV: TGGGTAATCCATAGAGCCCAG | Sango Biotech | N/A |
mouse gapdh FWD: TGATGGCAACAATCTCCAC mouse gapdh REV: CGTCCCGTAGACAAAATGGT | Sango Biotech | N/A |
图1 高脂饮食喂养前后 WT 和 Trpv1 敲除的小鼠的WGCNANote: A. Modules of WT, KO, WT-HFD, and KO-HFD mice (n=3 mice in WT and KO group, n=4 mice in WT-HFD and KO-HFD group). B/E/H. Top 20 pathways of GO and KEGG enrichment analysis of the pink, black and blue module. C/F/I. Network plot of the top 10 genes in pink, black and blue module. D/G/J. Trajectory of the module eigengenes in pink, black and blue module. One-way ANOVA was applied. *P < 0.05, ***P < 0.001, ****P = 0.000.
Fig 1 WGCNA in WT and genetic Trpv1 deletion mice before and after high fat feeding
图2 高脂饮食改变 Trpv1 敲除的小鼠脑内的脂质组成分Note: A. The composition of lipidome profiling of brain cells. B—C. Lipidome profiling of WT-HFD compared to WT and KO-HFD compared to KO mice brain. D. Distribution of PC, PE, and PG chain lengths of WT and KO mice induced by HFD treating. E—G. Distribution of PC, PE, and PG species of WT and KO mice induced by HFD treating. Data present the x±s (WT, WT-HFD, KO, n =3; KO-HFD, n =4). Statistical test: two-sided Student's t-test, two-way ANOVA followed by the Dunnett's post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, **** P = 0.000.
Fig 2 HFD induced liposome switch of brain cells with Trpv1 deficiency
图3 Trpv1 敲除缓解高脂饮食对小鼠大脑转录组的多种影响Note: A. Top lipidome enriched KEGG pathways of WT-HFD compared to WT mice and KO-HFD compared to KO mice. B/C. Gene expression changes, top GO and KEGG pathways enriched pathways of KO compared to WT mice and KO-HFD compared to WT-HFD mice.D—I. Heat maps of KO compared to WT mice and KO-HFD compared to WT-HFD mice.
Fig 3 Genetic Trpv1 deletion reduced HFD-induced multiple effects on brain transcriptome
图4 Trpv1 敲除缓解高脂饮食对大脑代谢途径的多种影响Note: A. The expressions of genes involved in monocarboxylate transporters, gluconeogenesis, glucose transporter, lactate shuttle, glycolysis, TCA cycle, and oxidative phosphorylation of WT and KO mice treated on SCD or 7 d HFD (red, increase; blue, decrease). B—G. The bar graphs show the fold induction of those genes within the class in WT-HFD versus WT mice (blue), and KO-HFD versus KO mice (red). All replicates within a class were averaged to obtain fold induction. Color key on the bottom of the figure indicated the group of samples.
Fig 4 Genetic Trpv1 deletion reduced HFD-induced multiple effects on metabolic pathways of the brain
图5 Trpv1 敲除可改善高脂饮食诱导的小胶质细胞活化Note: A/B. Iba-1+ active microglia and GFAP+ reactive astrocytes of WT or TRPV1 KO mice fed on 3-day HFD. Data represent x±s. ?P < 0.05, **P < 0.01, ***P < 0.001, ****P = 0.000. Scale bar: 50 μm.
Fig 5 Genetic Trpv1 deletion ameliorates HFD-induced microglia activation
图6 高脂饮食的小鼠大脑内的小胶质细胞和星形胶质细胞激活且上调表达TRPV1Note: A—C. Co-staining of TRPV1 and Iba1, TRPV1 and GFAP, TRPV1 and NeuN in SCD and 3-day HFD mice. Nuclei were stained in blue with DAPI. Scale bar: 50 μm; Scale bar: 10 μm.
Fig 6 Up-regulation of TRPV1 in active microglia and reactive astrocytes of HFD mice brains
图7 Trpv1 敲除可减轻高脂饮食诱导的神经炎症和线粒体激活Note: A—D. The mRNA levels of Trpv1, Ucp2, Tnf-α, and Il-1β in isolated cortical microglia (CD11b+ cells) from WT and KO mice mixed gender fed on SCD, 3 d HFD, 7 d HFD, or 8-week HFD (n=3). E/F. Mitochondrial membrane potential was detected by fluorescence microscopy (n=3). G. Indications of quantified lipid classes and acyl chains (circles) and genes (rectangles) of WT and KO mice by HFD. Data represent x±s. ?P < 0.05, ****P = 0.000. Scale bar: 50 μm.
Fig 7 Genetic Trpv1 deletion attenuate HFD-induced neuroinflammation and mitochondrial activation
| 1 | SANDOVAL D A, OBICI S, SEELEY R J. Targeting the CNS to treat type 2 diabetes[J]. Nat Rev Drug Discov, 2009, 8(5): 386-398. |
| 2 | HORVATH T L, SARMAN B, GARCÍA-CÁCERES C, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity[J]. Proc Natl Acad Sci USA, 2010, 107(33): 14875-14880. |
| 3 | VALDEARCOS M, DOUGLASS J D, ROBBLEE M M, et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility[J]. Cell Metab, 2018, 27(6): 1356. |
| 4 | KIM J D, YOON N A, JIN S, et al. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J]. Cell Metab, 2019, 30(5): 952-962.e5. |
| 5 | CATERINA M J, SCHUMACHER M A, TOMINAGA M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824. |
| 6 | MARRONE M C, MORABITO A, GIUSTIZIERI M, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice[J]. Nat Commun, 2017, 8: 15292. |
| 7 | GIBSON H E, EDWARDS J G, PAGE R S, et al. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons[J]. Neuron, 2008, 57(5): 746-759. |
| 8 | MARINELLI S, MARZO V, BERRETTA N, et al. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors[J]. J Neurosci, 2003, 23(8): 3136-3144. |
| 9 | DOYLE M W, BAILEY T W, JIN Y H, et al. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius[J]. J Neurosci, 2002, 22(18): 8222-8229. |
| 10 | EDWARDS J G. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications[J]. Prog Drug Res, 2014, 68: 77-104. |
| 11 | KIM S R, KIM S U, OH U, et al. Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release[J]. J Immunol, 2006, 177(7): 4322-4329. |
| 12 | HASSAN S, ELDEEB K, MILLNS P J, et al. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation[J]. Br J Pharmacol, 2014, 171(9): 2426-2439. |
| 13 | MIYAKE T, SHIRAKAWA H, NAKAGAWA T, et al. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration[J]. Glia, 2015, 63(10): 1870-1882. |
| 14 | SAPPINGTON R M, CALKINS D J. Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure[J]. Invest Ophthalmol Vis Sci, 2008, 49(7): 3004-3017. |
| 15 | SCHILLING T, EDER C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation[J]. J Neuroimmunol, 2009, 216(1/2): 118-121. |
| 16 | GAO W, SUN Y H, CAI M, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis[J]. Nat Commun, 2018, 9(1): 231. |
| 17 | BASKARAN P, KRISHNAN V, REN J, et al. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms[J]. Br J Pharmacol, 2016, 173(15): 2369-2389. |
| 18 | WEI T J, WANG Y X, XU W R, et al. KCa3.1 deficiency attenuates neuroinflammation by regulating an astrocyte phenotype switch involving the PI3K/AKT/GSK3β pathway[J]. Neurobiol Dis, 2019, 132: 104588. |
| 19 | ZHANG B, HORVATH S. A general framework for weighted gene co-expression network analysis[J]. Stat Appl Genet Mol Biol, 2005, 4: Article17. |
| 20 | LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559. |
| 21 | SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. |
| 22 | ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523. |
| 23 | FALK T, YUE X, ZHANG S L, et al. Vascular endothelial growth factor-B is neuroprotective in an in vivo rat model of Parkinson's disease[J]. Neurosci Lett, 2011, 496(1): 43-47. |
| 24 | KORDOWER J H, EMBORG M E, BLOCH J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease[J]. Science, 2000, 290(5492): 767-773. |
| 25 | ARENA E T, RUEDEN C T, HINER M C, et al. Quantitating the cell: turning images into numbers with ImageJ[J]. Wiley Interdiscip Rev Dev Biol, 2017, 6(2): 10.1002/wdev.260. |
| 26 | TRIEBL A, TRÖTZMÜLLER M, HARTLER J, et al. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1053: 72-80. |
| 27 | DIRCKS L, SUL H S. Acyltransferases of de novo glycerophospholipid biosynthesis[J]. Prog Lipid Res, 1999, 38(5/6): 461-479. |
| 28 | TRACEY T J, STEYN F J, WOLVETANG E J, et al. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease[J]. Front Mol Neurosci, 2018, 11: 10. |
| 29 | LEPROPRE S, KAUTBALLY S, OCTAVE M, et al. AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation[J]. Blood, 2018, 132(11): 1180-1192. |
| 30 | VANCE J E. Phospholipid synthesis and transport in mammalian cells[J]. Traffic, 2015, 16(1): 1-18. |
| 31 | MONNI M, CORAZZI L, MIGLIORATI G, et al. Respiratory state and phosphatidylserine import in brain mitochondria in vitro[J]. J Membrane Biol, 2000, 173(2): 97-105. |
| 32 | THOMAS H E, ZHANG Y, STEFELY J A, et al. Mitochondrial complex I activity is required for maximal autophagy[J]. Cell Rep, 2018, 24(9): 2404-2417.e8. |
| 33 | SHAHID R A, VIGNA S R, LAYNE A C, et al. Acinar cell production of leukotriene B4 contributes to development of neurogenic pancreatitis in mice[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 75-86. |
| 34 | MA L Q, ZHONG J, ZHAO Z G, et al. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis[J]. Cardiovasc Res, 2011, 92(3): 504-513. |
| 35 | LI L, CHEN J, NI Y X, et al. TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice[J]. Pflugers Arch - Eur J Physiol, 2012, 463(5): 727-732. |
| 36 | ZHAO J F, CHING L C, KOU Y R, et al. Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages: role of liver X receptor Α[J]. Mediators Inflamm, 2013, 2013: 925171. |
| 37 | TANG W, FAN Y Y. SIRT6 as a potential target for treating insulin resistance[J]. Life Sci, 2019, 231: 116558. |
| 38 | LEE E, JUNG D Y, KIM J H, et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance[J]. FASEB J, 2015, 29(8): 3182-3192. |
| 39 | RAZAVI R, CHAN Y, AFIFIYAN F N, et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes[J]. Cell, 2006, 127(6): 1123-1135. |
| 40 | GUILLEMOT-LEGRIS O, MUCCIOLI G G. Obesity-induced neuroinflammation: beyond the hypothalamus[J]. Trends Neurosci, 2017, 40(4): 237-253. |
| 41 | KETTENMANN H, HANISCH U K, NODA M, et al. Physiology of microglia[J]. Physiol Rev, 2011, 91(2): 461-553. |
| 42 | FERNANDES E S, BRITO C X L, TEIXEIRA S A, et al. TRPV1 antagonism by capsazepine modulates innate immune response in mice infected with Plasmodium berghei ANKA[J]. Mediators Inflamm, 2014, 2014: 506450. |
| 43 | MANES T D, WANG V, POBER J S. Divergent TCR-initiated calcium signals govern recruitment versus activation of human alloreactive effector memory T cells by endothelial cells[J]. J Immunol, 2018, 201(11): 3167-3174. |
| 44 | HUANG W X, YU F, SANCHEZ R M, et al. TRPV1 promotes repetitive febrile seizures by pro-inflammatory cytokines in immature brain[J]. Brain Behav Immun, 2015, 48: 68-77. |
| 45 | YOSHIDA A, FURUBE E, MANNARI T, et al. TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation[J]. Sci Rep, 2016, 6: 26088. |
| 46 | CHEN Y, WILLCOCKSON H H, VALTSCHANOFF J G. Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain[J]. Exp Neurol, 2009, 220(2): 383-390. |
| 47 | HO K W, WARD N J, CALKINS D J. TRPV1: a stress response protein in the central nervous system[J]. Am J Neurodegener Dis, 2012, 1(1): 1-14. |
| 48 | KONG W L, PENG Y Y, PENG B W. Modulation of neuroinflammation: role and therapeutic potential of TRPV1 in the neuro-immune axis[J]. Brain Behav Immun, 2017, 64: 354-366. |
| 49 | LEONELLI M, MARTINS D O, BRITTO L R G. TRPV1 receptors are involved in protein nitration and Müller cell reaction in the acutely axotomized rat retina[J]. Exp Eye Res, 2010, 91(5): 755-768. |
| [1] | 朱子俊, 钱逸斐, 李倩玉, 李松玲, 覃雯莉, 刘艳丰. 后期促进复合体亚基10调控PI3K-AKT-mTOR通路促进肝细胞癌进展的研究[J]. 上海交通大学学报(医学版), 2025, 45(9): 1171-1182. |
| [2] | 杨全军, 柏丁源, 周雨萱, 白露, 郭澄. 异柠檬酸脱氢酶1突变介导D-2-羟基戊二酸代谢重编程在肿瘤免疫调控中的作用及相关药物研发进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1239-1248. |
| [3] | 黄昕, 刘家辉, 叶敬文, 钱文莉, 许万星, 王琳. 基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1009-1016. |
| [4] | 赛提尔古丽·克然木, 钱蕾, 丁思怡, 哈娜提·马合力木汗, 杨雪儿, 贾浩. 精氨酸代谢调控间充质干细胞功能的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 910-915. |
| [5] | 宋静, 姜烁, 万方煜, 李娟, 艾迪娜·木合塔, 闵新颖, 周婧琪. 膳食模式干预对代谢相关脂肪性肝病的影响与机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(7): 926-933. |
| [6] | 黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 792-799. |
| [7] | 禹恺, 帅哲玮, 黄洪军, 罗艳. 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(5): 630-638. |
| [8] | 邹沛辰, 刘鸿宇, 阿衣娜扎尔·艾合买提, 朱亮, 唐亚斌, 雷绘敏. 索托拉西布获得性耐药肺癌细胞的代谢轮廓分析[J]. 上海交通大学学报(医学版), 2025, 45(2): 138-149. |
| [9] | 蔡蔷薇, 孙锋, 吴文玉, 邵付明, 高正良, 金盛凯. 多发性硬化症小胶质细胞转录调控网络分析[J]. 上海交通大学学报(医学版), 2025, 45(1): 29-41. |
| [10] | 陈怀煌, 左武, 卞迁. CTCF调控小鼠AML12肝细胞系脂质代谢功能与基因表达[J]. 上海交通大学学报(医学版), 2024, 44(9): 1069-1082. |
| [11] | 吴望舒, 王旻洲, 宋阿会, 赵冰茹, 鲁嘉越, 洪文凯, 顾乐怡, 谢可炜, 陆任华. 复方氨基酸胶囊治疗维持性血液透析患者营养不良及钙磷代谢障碍的有效性和安全性[J]. 上海交通大学学报(医学版), 2024, 44(8): 1023-1029. |
| [12] | 许万星, 王琳, 郭巧梅, 王薛庆, 娄加陶. 多模态肺结节诊断模型的临床验证及应用价值探索[J]. 上海交通大学学报(医学版), 2024, 44(8): 1030-1036. |
| [13] | 夏西茜, 丁珂珂, 张慧恒, 彭旭飞, 孙昳旻, 唐雅珺, 汤晓芳. 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 839-846. |
| [14] | 安俊伊, 陈必颖, 陈循睿, 尹姗姗, 边洲亮, 刘峰. SFXN3在头颈部鳞状细胞癌中的表达及其对细胞增殖的影响[J]. 上海交通大学学报(医学版), 2024, 44(4): 427-434. |
| [15] | 邓青松, 张长青, 陶诗聪. 烟酰胺代谢相关基因与骨关节炎的关系探索[J]. 上海交通大学学报(医学版), 2024, 44(2): 145-160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||