
上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (9): 1175-1185.doi: 10.3969/j.issn.1674-8115.2023.09.012
杨越1,2(
), 何开举3, 宗家豪4, 杨自逸1,2, 吴向嵩1,2, 龚伟1,2(
)
收稿日期:2023-05-30
接受日期:2023-08-22
出版日期:2023-09-28
发布日期:2023-09-28
通讯作者:
龚 伟,电子信箱:gongwei@xinhuamed.com.cn。作者简介:杨 越(1999—),女,硕士生;电子信箱:yueyueyoung@126.com。
基金资助:
YANG Yue1,2(
), HE Kaiju3, ZONG Jiahao4, YANG Ziyi1,2, WU Xiangsong1,2, GONG Wei1,2(
)
Received:2023-05-30
Accepted:2023-08-22
Online:2023-09-28
Published:2023-09-28
Contact:
GONG Wei, E-mail: gongwei@xinhuamed.com.cn.Supported by:摘要:
目的·采用meta分析方法全面评价细胞游离DNA(cell-free DNA,cfDNA)对胆道癌(biliary tract cancer,BTC)的诊断准确性,探究样本来源、检测方法以及截断值选择等对诊断效果的影响,为更好开展临床应用提供依据。方法·检索8个中英文数据库中关于cfDNA对BTC诊断价值的前瞻性或回顾性研究,截止时间为2023年4月。根据纳入和排除标准进行筛选和数据提取,用Spearman秩相关分析评估阈值效应,运用Cochran Q检验、I2检验分析纳入研究间的异质性。拟合双变量混合效应模型,计算总体敏感度、特异度和曲线下面积(area under the curve,AUC)等统计量,判断诊断性能。同时,基于研究类型、样本量大小、检测方式、样本来源和诊断参照标准进行亚组分析。结果·共纳入28项诊断性试验,用诊断性试验准确性质量评价工具2(Diagnostic Accuracy Studies Tool Version 2,QUADAS-2)评价均属于中-高等质量研究,Spearman秩相关分析提示存在阈值效应,合并统计量后求得敏感度(Sen合并)为0.80(95%CI 0.67~0.88),特异度(Spe合并)为0.96(95%CI 0.92~0.98),阳性似然比(PLR合并)为22.7(95%CI 9.4~55.2),阴性似然比(NLR合并)为0.21(95%CI 0.12~0.36),诊断比数比(DOR合并)为108(95%CI 31~374)。综合受试者工作特征(summary receiver operating characteristic,SROC)曲线的AUC为0.96(95%CI 0.94~0.98),提示cfDNA对BTC的诊断效能较高。亚组分析结果提示,选择不同的检测方式和样本来源的准确度和敏感度有所不同。结论·cfDNA检测对诊断BTC敏感度和特异度较高,适用于经影像学和常规肿瘤标志物初筛怀疑有恶性风险的患者,但检测方法和样本来源的选择仍需进一步开展面向更广泛人群的临床研究来进一步规范。
中图分类号:
杨越, 何开举, 宗家豪, 杨自逸, 吴向嵩, 龚伟. 细胞游离DNA在胆道癌诊断中的价值:一项meta分析[J]. 上海交通大学学报(医学版), 2023, 43(9): 1175-1185.
YANG Yue, HE Kaiju, ZONG Jiahao, YANG Ziyi, WU Xiangsong, GONG Wei. Diagnostic value of cell-free DNA to biliary tract cancers: a meta-analysis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1175-1185.
| Study | Study type | Country | Reference standard |
|---|---|---|---|
| HAN 2021[ | Prospective study | South Korea | BTC: pathological examination |
| HE 2023[ | Retrospective and prospective study | China | BTC: pathological examination; BBD: pathological examination and clinical follow-up; healthy population: pathological examination/clinical follow-up |
| HUA 2021[ | Prospective study | China | BTC: pathological examination |
| KINUGASA 2018[ | Prospective study | Japan | Pathological examination |
| KUMARI 2019[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2022[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2017[ | Retrospective study | India | Imaging/pathological examination |
| WANG 2021[ | Prospective study | China | Pathological examination |
| WASENANG 2019[ | Prospective study | Thailand | BTC: pathological examination |
| WINTACHAI 2021[ | Retrospective study | Thailand | Pathological examination |
| MO 2020[ | Retrospective study | China | BTC/BBD: imaging examination/pathological examination |
表1 纳入研究基本信息表
Tab 1 Basic characteristics of the included studies
| Study | Study type | Country | Reference standard |
|---|---|---|---|
| HAN 2021[ | Prospective study | South Korea | BTC: pathological examination |
| HE 2023[ | Retrospective and prospective study | China | BTC: pathological examination; BBD: pathological examination and clinical follow-up; healthy population: pathological examination/clinical follow-up |
| HUA 2021[ | Prospective study | China | BTC: pathological examination |
| KINUGASA 2018[ | Prospective study | Japan | Pathological examination |
| KUMARI 2019[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2022[ | Retrospective study | India | Imaging/pathological examination |
| KUMARI 2017[ | Retrospective study | India | Imaging/pathological examination |
| WANG 2021[ | Prospective study | China | Pathological examination |
| WASENANG 2019[ | Prospective study | Thailand | BTC: pathological examination |
| WINTACHAI 2021[ | Retrospective study | Thailand | Pathological examination |
| MO 2020[ | Retrospective study | China | BTC/BBD: imaging examination/pathological examination |
| Study | Sample | Method | Sample size/n | Cut off | TP/n | FP/n | FN/n | TN/n |
|---|---|---|---|---|---|---|---|---|
| HAN 2021[ | Bile | ddPCR | 46 | 1 500 copies·mL-1 | 20 | 0 | 22 | 4 |
| Plasma | ddPCR | 20 | 60 copies·mL-1 | 3 | 0 | 13 | 4 | |
| HE 2023[ | Bile | qPCR | 188 | NA | 74 | 0 | 21 | 93 |
| Bile | NGS | 188 | NA | 80 | 2 | 15 | 91 | |
| HUA 2021[ | Serum | qPCR | 158 | 403.65 ng·mL-1 | 78 | 2 | 5 | 73 |
| Serum | qPCR | 153 | 113.82 ng·mL-1 | 83 | 0 | 0 | 70 | |
| Serum | qPCR | 158 | 364 ng·mL-1 | 76 | 7 | 7 | 68 | |
| Serum | qPCR | 153 | 96 ng·mL-1 | 83 | 0 | 0 | 70 | |
| KINUGASA 2018[ | Bile | NGS | 43 | NA | 14 | 0 | 10 | 19 |
| KUMARI 2019[ | Serum | qPCR | 96 | 406.582 5 ng·mL-1 | 48 | 5 | 12 | 31 |
| Serum | qPCR | 96 | 1 128.429 ng·mL-1 | 43 | 12 | 17 | 24 | |
| Serum | qPCR | 96 | cfDNA integrity index: 0.356 | 47 | 7 | 13 | 29 | |
| Serum | Methylated DNA Quantification Kit | 96 | Global DNA methylation: 0.713 5 | 33 | 18 | 27 | 18 | |
| KUMARI 2022[ | Serum | qPCR | 75 | 251.2 ng·mL-1 | 50 | 0 | 0 | 25 |
| KUMARI 2017[ | Serum | qPCR | 56 | 372.92 ng·mL-1 | 30 | 0 | 4 | 22 |
| Serum | qPCR | 51 | 218.55 ng·mL-1 | 34 | 0 | 0 | 17 | |
| WANG 2021[ | Plasma | Low-coverage WGS | 47 | |Z|-score in UCAD test 2.32 | 26 | 2 | 3 | 16 |
| WASENANG 2019[ | Serum | MSP | 80 | OPCML 3.24%‒50% methylation | 32 | 4 | 8 | 36 |
| Serum | MSP | 80 | HOXD9 1.56%‒50% methylation | 27 | 4 | 13 | 36 | |
| Serum | MSP | 80 | HOXA9 1.56%‒50% methylation | 19 | 15 | 21 | 25 | |
| Serum | MSP | 80 | OPCML, HOXD9 both methylated | 25 | 0 | 15 | 40 | |
| Serum | MSP | 80 | OPCML, HOXA9 both methylated | 12 | 1 | 28 | 39 | |
| Serum | MSP | 80 | HOXA9, HOXD9 both methylated | 10 | 1 | 30 | 39 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 ≥2 markers methylated | 29 | 2 | 11 | 38 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 all methylated | 9 | 0 | 31 | 40 | |
| WINTACHAI 2021[ | Plasma | qPCR | 92 | 0.217 5 ng·µL-1 | 55 | 1 | 7 | 29 |
| Plasma | qPCR | 95 | 0.338 8 ng·µL-1 | 51 | 14 | 11 | 19 | |
| MO 2020[ | Plasma | qPCR | 85 | 18.06 ng·µL-1 | 26 | 2 | 19 | 38 |
表2 纳入研究数据提取
Tab 2 Collected data of the included studies
| Study | Sample | Method | Sample size/n | Cut off | TP/n | FP/n | FN/n | TN/n |
|---|---|---|---|---|---|---|---|---|
| HAN 2021[ | Bile | ddPCR | 46 | 1 500 copies·mL-1 | 20 | 0 | 22 | 4 |
| Plasma | ddPCR | 20 | 60 copies·mL-1 | 3 | 0 | 13 | 4 | |
| HE 2023[ | Bile | qPCR | 188 | NA | 74 | 0 | 21 | 93 |
| Bile | NGS | 188 | NA | 80 | 2 | 15 | 91 | |
| HUA 2021[ | Serum | qPCR | 158 | 403.65 ng·mL-1 | 78 | 2 | 5 | 73 |
| Serum | qPCR | 153 | 113.82 ng·mL-1 | 83 | 0 | 0 | 70 | |
| Serum | qPCR | 158 | 364 ng·mL-1 | 76 | 7 | 7 | 68 | |
| Serum | qPCR | 153 | 96 ng·mL-1 | 83 | 0 | 0 | 70 | |
| KINUGASA 2018[ | Bile | NGS | 43 | NA | 14 | 0 | 10 | 19 |
| KUMARI 2019[ | Serum | qPCR | 96 | 406.582 5 ng·mL-1 | 48 | 5 | 12 | 31 |
| Serum | qPCR | 96 | 1 128.429 ng·mL-1 | 43 | 12 | 17 | 24 | |
| Serum | qPCR | 96 | cfDNA integrity index: 0.356 | 47 | 7 | 13 | 29 | |
| Serum | Methylated DNA Quantification Kit | 96 | Global DNA methylation: 0.713 5 | 33 | 18 | 27 | 18 | |
| KUMARI 2022[ | Serum | qPCR | 75 | 251.2 ng·mL-1 | 50 | 0 | 0 | 25 |
| KUMARI 2017[ | Serum | qPCR | 56 | 372.92 ng·mL-1 | 30 | 0 | 4 | 22 |
| Serum | qPCR | 51 | 218.55 ng·mL-1 | 34 | 0 | 0 | 17 | |
| WANG 2021[ | Plasma | Low-coverage WGS | 47 | |Z|-score in UCAD test 2.32 | 26 | 2 | 3 | 16 |
| WASENANG 2019[ | Serum | MSP | 80 | OPCML 3.24%‒50% methylation | 32 | 4 | 8 | 36 |
| Serum | MSP | 80 | HOXD9 1.56%‒50% methylation | 27 | 4 | 13 | 36 | |
| Serum | MSP | 80 | HOXA9 1.56%‒50% methylation | 19 | 15 | 21 | 25 | |
| Serum | MSP | 80 | OPCML, HOXD9 both methylated | 25 | 0 | 15 | 40 | |
| Serum | MSP | 80 | OPCML, HOXA9 both methylated | 12 | 1 | 28 | 39 | |
| Serum | MSP | 80 | HOXA9, HOXD9 both methylated | 10 | 1 | 30 | 39 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 ≥2 markers methylated | 29 | 2 | 11 | 38 | |
| Serum | MSP | 80 | OPCML, HOXA9, HOXD9 all methylated | 9 | 0 | 31 | 40 | |
| WINTACHAI 2021[ | Plasma | qPCR | 92 | 0.217 5 ng·µL-1 | 55 | 1 | 7 | 29 |
| Plasma | qPCR | 95 | 0.338 8 ng·µL-1 | 51 | 14 | 11 | 19 | |
| MO 2020[ | Plasma | qPCR | 85 | 18.06 ng·µL-1 | 26 | 2 | 19 | 38 |
| Subgroup | Study/n | Sensitivity (95%CI) | Specificity (95%CI) | PLR | NLR | DOR | AUC (95%CI) |
|---|---|---|---|---|---|---|---|
| Overall | 28 | 0.80 (0.67‒0.88) | 0.96 (0.92‒0.98) | 22.7 | 0.21 | 108 | 0.96 (0.94‒0.98) |
| Study type | |||||||
| Prospective study | 16 | 0.74 (0.51‒0.89) | 0.97 (0.93‒0.99) | 26.1 | 0.26 | 99 | 0.97 (0.95‒0.98) |
| Retrospective study | 10 | 0.86 (0.72‒0.93) | 0.93 (0.73‒0.99) | 12.4 | 0.15 | 81 | 0.95 (0.92‒0.96) |
| Sample size | |||||||
| >90 | 12 | 0.89 (0.78‒0.95) | 0.96 (0.83‒0.99) | 20.9 | 0.12 | 179 | 0.96 (0.94‒0.98) |
| ≤90 | 16 | 0.67 (0.47‒0.83) | 0.97 (0.92‒0.99) | 23.9 | 0.34 | 71 | 0.96 (0.94‒0.97) |
| Method | |||||||
| Gene or mutation analysis | 6 | 0.67 (0.44‒0.84) | 1.00 (0.85‒1.00) | 457.0 | 0.33 | 1 394 | 0.95 (0.93‒0.97) |
| qPCR | 13 | 0.94 (0.84‒0.98) | 0.98 (0.88‒1.00) | 38.8 | 0.06 | 644 | 0.99 (0.98‒1.00) |
| Methylation analysis | 9 | 0.51 (0.37‒0.65) | 0.94 (0.82‒0.98) | 9.2 | 0.52 | 18 | 0.77 (0.73‒0.81) |
| Sample type | |||||||
| Bile | 4 | 0.70 (0.53‒0.83) | 1.00 (0.67‒1.00) | 511.0 | 0.30 | 1 690 | 0.95 (0.92‒0.96) |
| Serum | 19 | 0.85 (0.66‒0.94) | 0.97 (0.90‒0.99) | 24.7 | 0.16 | 156 | 0.97 (0.96‒0.99) |
| Plasma | 5 | 0.72 (0.45‒0.89) | 0.92 (0.70‒0.98) | 9.4 | 0.30 | 31 | 0.91 (0.88‒0.93) |
| Control type | |||||||
| Benign biliary disease | 18 | 0.68 (0.54‒0.79) | 0.96 (0.92‒0.99) | 19.0 | 0.34 | 57 | 0.93 (0.91‒0.95) |
| Healthy population | 6 | 1.00 (0.70‒1.00) | 1.00 (0.90‒1.00) | 503.6 | 0.00 | 205 953 | 1.00 (0.99‒1.00) |
| Reference standard | |||||||
| Pathological examination | 4 | 0.82 (0.69‒0.90) | 0.93 (0.60‒0.99) | 12.3 | 0.19 | 63 | 0.90 (0.87‒0.93) |
| Pathological examination in BTC group | 16 | 0.75 (0.52‒0.89) | 0.98 (0.94‒0.99) | 33.7 | 0.26 | 130 | 0.98 (0.96‒0.99) |
| Clinical assessment | 8 | 0.87 (0.66‒0.96) | 0.95 (0.68‒0.99) | 18.2 | 0.14 | 129 | 0.96 (0.94‒0.97) |
表3 亚组分析
Tab 3 Subgroup analysis
| Subgroup | Study/n | Sensitivity (95%CI) | Specificity (95%CI) | PLR | NLR | DOR | AUC (95%CI) |
|---|---|---|---|---|---|---|---|
| Overall | 28 | 0.80 (0.67‒0.88) | 0.96 (0.92‒0.98) | 22.7 | 0.21 | 108 | 0.96 (0.94‒0.98) |
| Study type | |||||||
| Prospective study | 16 | 0.74 (0.51‒0.89) | 0.97 (0.93‒0.99) | 26.1 | 0.26 | 99 | 0.97 (0.95‒0.98) |
| Retrospective study | 10 | 0.86 (0.72‒0.93) | 0.93 (0.73‒0.99) | 12.4 | 0.15 | 81 | 0.95 (0.92‒0.96) |
| Sample size | |||||||
| >90 | 12 | 0.89 (0.78‒0.95) | 0.96 (0.83‒0.99) | 20.9 | 0.12 | 179 | 0.96 (0.94‒0.98) |
| ≤90 | 16 | 0.67 (0.47‒0.83) | 0.97 (0.92‒0.99) | 23.9 | 0.34 | 71 | 0.96 (0.94‒0.97) |
| Method | |||||||
| Gene or mutation analysis | 6 | 0.67 (0.44‒0.84) | 1.00 (0.85‒1.00) | 457.0 | 0.33 | 1 394 | 0.95 (0.93‒0.97) |
| qPCR | 13 | 0.94 (0.84‒0.98) | 0.98 (0.88‒1.00) | 38.8 | 0.06 | 644 | 0.99 (0.98‒1.00) |
| Methylation analysis | 9 | 0.51 (0.37‒0.65) | 0.94 (0.82‒0.98) | 9.2 | 0.52 | 18 | 0.77 (0.73‒0.81) |
| Sample type | |||||||
| Bile | 4 | 0.70 (0.53‒0.83) | 1.00 (0.67‒1.00) | 511.0 | 0.30 | 1 690 | 0.95 (0.92‒0.96) |
| Serum | 19 | 0.85 (0.66‒0.94) | 0.97 (0.90‒0.99) | 24.7 | 0.16 | 156 | 0.97 (0.96‒0.99) |
| Plasma | 5 | 0.72 (0.45‒0.89) | 0.92 (0.70‒0.98) | 9.4 | 0.30 | 31 | 0.91 (0.88‒0.93) |
| Control type | |||||||
| Benign biliary disease | 18 | 0.68 (0.54‒0.79) | 0.96 (0.92‒0.99) | 19.0 | 0.34 | 57 | 0.93 (0.91‒0.95) |
| Healthy population | 6 | 1.00 (0.70‒1.00) | 1.00 (0.90‒1.00) | 503.6 | 0.00 | 205 953 | 1.00 (0.99‒1.00) |
| Reference standard | |||||||
| Pathological examination | 4 | 0.82 (0.69‒0.90) | 0.93 (0.60‒0.99) | 12.3 | 0.19 | 63 | 0.90 (0.87‒0.93) |
| Pathological examination in BTC group | 16 | 0.75 (0.52‒0.89) | 0.98 (0.94‒0.99) | 33.7 | 0.26 | 130 | 0.98 (0.96‒0.99) |
| Clinical assessment | 8 | 0.87 (0.66‒0.96) | 0.95 (0.68‒0.99) | 18.2 | 0.14 | 129 | 0.96 (0.94‒0.97) |
| 1 | VALLE J W, LAMARCA A, GOYAL L, et al. New horizons for precision medicine in biliary tract cancers[J]. Cancer Discov, 2017, 7(9): 943-962. |
| 2 | RIZVI S, KHAN S A, HALLEMEIER C L, et al. Cholangiocarcinoma: evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. |
| 3 | BENAVIDES M, ANTÓN A, GALLEGO J, et al. Biliary tract cancers: seom clinical guidelines[J]. Clin Transl Oncol, 2015, 17(12): 982-987. |
| 4 | EVERHART J E, RUHL C E. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas[J]. Gastroenterology, 2009, 136(4): 1134-1144. |
| 5 | WAN J C M, MASSIE C, GARCIA-CORBACHO J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA[J]. Nat Rev Cancer, 2017, 17(4): 223-238. |
| 6 | VALLE J W, KELLEY R K, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397(10272): 428-444. |
| 7 | BANALES J M, MARIN J J G, LAMARCA A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. |
| 8 | ROA J C, GARCÍA P, KAPOOR V K, et al. Gallbladder cancer[J]. Nat Rev Dis Primers, 2022, 8(1): 69. |
| 9 | 梁后杰, 秦叔逵, 沈锋, 等. CSCO胆道系统肿瘤诊断治疗专家共识(2019年版)[J]. 临床肿瘤学杂志, 2019, 24(9): 828-838. |
| LIANG H J, QIN S K, SHEN F et al. Expert consensus on diagnosis and treatment of CSCO biliary systerm tumors (2019 edition)[J]. Chinese Clinical Oncology, 2019, 24(9): 828-838. | |
| 10 | VALLE J W. Advances in the treatment of metastatic or unresectable biliary tract cancer[J]. Ann Oncol, 2010, 21(Suppl 7): vii345-vii348. |
| 11 | BLECHACZ B, KOMUTA M, ROSKAMS T, et al. Clinical diagnosis and staging of cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(9): 512-522. |
| 12 | 蔡晨, 龚伟. 胆囊癌辅助治疗的研究进展[J]. 外科理论与实践, 2021, 26(2): 167-170. |
| CAI C, GONG W. Study on gallbladder cancer adjuvant therapy[J]. Surgery Theory and Practice, 2021, 26(2): 167-170. | |
| 13 | LONE S N, NISAR S, MASOODI T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments[J]. Mol Cancer, 2022, 21(1): 79. |
| 14 | CROWLEY E, DI NICOLANTONIO F, LOUPAKIS F, et al. Liquid biopsy: monitoring cancer-genetics in the blood[J]. Nat Rev Clin Oncol, 2013, 10(8): 472-484. |
| 15 | ALIX-PANABIÈRES C, PANTEL K. Liquid biopsy: from discovery to clinical application[J]. Cancer Discov, 2021, 11(4): 858-873. |
| 16 | LEON S A, SHAPIRO B, SKLAROFF D M, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3): 646-650. |
| 17 | VESSIES D C L, GREUTER M J E, VAN ROOIJEN K L, et al. Performance of four platforms for KRAS mutation detection in plasma cell-free DNA: ddpcr, Idylla, COBAS z480 and BEAMing[J]. Sci Rep, 2020, 10(1): 8122. |
| 18 | HEITZER E, ULZ P, GEIGL J B. Circulating tumor DNA as a liquid biopsy for cancer[J]. Clin Chem, 2015, 61(1): 112-123. |
| 19 | OLMEDILLAS-LÓPEZ S, GARCÍA-ARRANZ M, GARCÍA-OLMO D. Current and emerging applications of droplet digital PCR in oncology[J]. Mol Diagn Ther, 2017, 21(5): 493-510. |
| 20 | IGNATIADIS M, SLEDGE G W, JEFFREY S S. Liquid biopsy enters the clinic: implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312. |
| 21 | SIRAVEGNA G, MUSSOLIN B, VENESIO T, et al. How liquid biopsies can change clinical practice in oncology[J]. Ann Oncol, 2019, 30(10): 1580-1590. |
| 22 | SHEN N J, ZHANG D D, YIN L, et al. Bile cell‑free DNA as a novel and powerful liquid biopsy for detecting somatic variants in biliary tract cancer[J]. Oncol Rep, 2019, 42(2): 549-560. |
| 23 | 央茂, 李永盛, 吴文广, 等. 液态活检技术在胆道肿瘤诊治中的应用进展[J]. 中华肝胆外科杂志, 2021, 27(6): 472-476. |
| YANG M, LI Y S, WU W G et al. Application progress of liquid biopsy in the diagnosis and treatment of biliary tract cancer[J]. Chinese Journal of Hepatobiliary Surgery, 2021, 27(6): 472-476. | |
| 24 | LIBERATI A, ALTMAN D G, TETZLAFF J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration[J]. BMJ, 2009, 339: b2700. |
| 25 | HAN J Y, AHN K S, KIM T S, et al. Liquid biopsy from bile-circulating tumor DNA in patients with biliary tract cancer[J]. Cancers, 2021, 13(18): 4581. |
| 26 | HE S, ZENG F X, YIN H H, et al. Molecular diagnosis of pancreatobiliary tract cancer by detecting mutations and methylation changes in bile samples[J]. EClinicalMedicine, 2023, 55: 101736. |
| 27 | HUA Y, SUN F Y, HU F, et al. Diagnostic value of quantification of circulating free DNA for gall bladder cancer using a chemiluminescence DNA biosensor system based on DNA G-quadruplex/hemin enzyme[J]. Transl Oncol, 2021, 14(1): 100928. |
| 28 | KINUGASA H, NOUSO K, AKO S, et al. Liquid biopsy of bile for the molecular diagnosis of gallbladder cancer[J]. Cancer Biol Ther, 2018, 19(10): 934-938. |
| 29 | KUMARI S, HUSAIN N, AGARWAL A, et al. Diagnostic value of circulating free DNA integrity and global methylation status in gall bladder carcinoma[J]. Pathol Oncol Res, 2019, 25(3): 925-936. |
| 30 | KUMARI S, MISHRA S, HUSAIN N, et al. Comparison of circulating DNA in malignant neoplasia from diverse locations: investigating a diagnostic role[J]. Indian J Pathol Microbiol, 2022, 65(1): 93-99. |
| 31 | KUMARI S, TEWARI S, HUSAIN N, et al. Quantification of circulating free DNA as a diagnostic marker in gall bladder cancer[J]. Pathol Oncol Res, 2017, 23(1): 91-97. |
| 32 | WANG X, FU X H, QIAN Z L, et al. Non-invasive detection of biliary tract cancer by low-coverage whole genome sequencing from plasma cell-free DNA: a prospective cohort study[J]. Transl Oncol, 2021, 14(1): 100908. |
| 33 | WASENANG W, CHAIYARIT P, PROUNGVITAYA S, et al. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases[J]. Clin Epigenetics, 2019, 11(1): 39. |
| 34 | WINTACHAI P, LIM J Q, TECHASEN A, et al. Diagnostic and prognostic value of circulating cell-free DNA for cholangiocarcinoma[J]. Diagnostics, 2021, 11(6): 999. |
| 35 | 莫迪, 李梦雨, 李华洋, 等. CA199、CEA及cfDNA的联合检测对胆管癌的辅助诊断价值[J]. 牡丹江医学院学报, 2020, 41(3): 18-21. |
| MO D, LI M Y, LI H Y, et al. Diagnostic value of combined detection of CA, CEA and plasma cell-free DNA for cholangiocarcinoma[J]. Journal of Mudanjiang Medical University, 2020, 41(3): 18-21. | |
| 36 | 张俊, 徐志伟, 李克. 诊断性试验meta分析的效应指标评价[J]. 中国循证医学杂志, 2013, 13(7): 890-895. |
| ZHANG J, XU Z W, LI K. Evaluation on the effect index of diagnostic test[J]. Chinese Journal of Evidence-Based Medicine, 2013, 13(7): 890-895. | |
| 37 | KHAN S A, TAVOLARI S, BRANDI G. Cholangiocarcinoma: epidemiology and risk factors[J]. Liver Int, 2019, 39(S1): 19-31. |
| 38 | ARRICHIELLO G, NACCA V, PARAGLIOLA F, et al. Liquid biopsy in biliary tract cancer from blood and bile samples: current knowledge and future perspectives[J]. Explor Target Antitumor Ther, 2022, 3(3): 362-374. |
| 39 | SINGH A, DWIVEDI A. Circulating miRNA and cell-free DNA as a potential diagnostic tool in early detection of biliary tract cancer: a meta-analysis[J]. Biomarkers, 2022, 27(5): 399-406. |
| 40 | 龚伟, 吴向嵩, 杨自逸. 胆囊癌转化治疗模式探索与思考[J]. 中国实用外科杂志, 2022, 42(2): 163-166. |
| GONG W, WU X S, YANG Z Y. Exploring novel therapeutic approach for advanced gallbladder cancer[J]. Chinese Journal of Practical Surgery, 2022, 42(2): 163-166. |
| [1] | 胥瀚文, 陈墨馨, 梁小乙, 舒琴, 聂琬钦, 杨雪峰, 沈慜瑄, 黎晓静, 曹禹, 李琳. 基于面部照片的眼病智能诊断研究进展[J]. 上海交通大学学报(医学版), 2025, 45(9): 1249-1255. |
| [2] | 黄昕, 刘家辉, 叶敬文, 钱文莉, 许万星, 王琳. 基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J]. 上海交通大学学报(医学版), 2025, 45(8): 1009-1016. |
| [3] | 张兴利, 田洁, 罗菁, 刘倩, 欧阳皖雁, 邱宏春, 王焰, 糜坚青. 剂量减低的来那度胺/美法仑/醋酸泼尼松方案治疗老年虚弱新诊断多发性骨髓瘤的效果分析[J]. 上海交通大学学报(医学版), 2025, 45(7): 815-822. |
| [4] | 赵建磊, 赵婧琦, 刘唱, 黄靖竣, 金升元. 水动力清创治疗烧伤的效果:随机对照试验的系统评价[J]. 上海交通大学学报(医学版), 2025, 45(5): 614-623. |
| [5] | 刘楚萱, 左佳鑫, 熊屏. 基于超声评分参数及临床指标的列线图鉴别原发性干燥综合征与IgG4相关唾液腺炎[J]. 上海交通大学学报(医学版), 2025, 45(3): 373-380. |
| [6] | 刘佳, 任灵杰, 施敏敏, 唐笑梅, 马芳芳, 秦洁洁. COL12A作为一种新型的胰腺导管腺癌血清诊断标志物的鉴定与评价[J]. 上海交通大学学报(医学版), 2025, 45(10): 1342-1352. |
| [7] | 唐培源, 汪崇泽, 洪武, 费慧, 易正辉, 吕钦谕. 以间歇性晕倒伴随肌阵挛发作为主要表现的分离转换障碍1例报道[J]. 上海交通大学学报(医学版), 2024, 44(8): 1056-1060. |
| [8] | 孙晨寅, 吴百川, 张慧凤, 方贻儒, 彭代辉. 体动记录仪评估抑郁症昼夜节律:一项系统综述和meta分析[J]. 上海交通大学学报(医学版), 2024, 44(5): 606-616. |
| [9] | 郭勇麟, 陈墨馨, 刘哲源, 李奕霏, 王子琦, 舒琴, 李琳. 基于人工智能技术的斜视诊疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 393-398. |
| [10] | 邓青松, 张长青, 陶诗聪. 烟酰胺代谢相关基因与骨关节炎的关系探索[J]. 上海交通大学学报(医学版), 2024, 44(2): 145-160. |
| [11] | 杨婧偊, 陈留宝, 王康太, 杨兴智, 于海涛. 基于实验室指标的系统性红斑狼疮鉴别诊断列线图的构建及评估[J]. 上海交通大学学报(医学版), 2024, 44(2): 204-211. |
| [12] | 陈惠, 朱唯一, 姚屹瑾. 调整左旋甲状腺素治疗剂量对甲状腺功能减退孕妇母婴结局影响的meta分析[J]. 上海交通大学学报(医学版), 2023, 43(7): 906-915. |
| [13] | 王颖雯, 李小玲, 代佳佳, 刘芳, 黄剑峰, 王立波, 张晓波, 冯瑞. 儿童重症支气管哮喘的流行病学特征及危险因素:一项单中心前瞻性队列研究[J]. 上海交通大学学报(医学版), 2023, 43(6): 665-672. |
| [14] | 党向阳, 唐雨一, 李卫国, 刘恩梅. 呼出气一氧化氮检测对儿童咳嗽变异性哮喘诊断价值的系统评价和meta分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 680-688. |
| [15] | 李瑛, 谭阳霞, 尹虹心, 蒋雁翎, 陈立, 蒙国宇. ZNF384融合亚型急性白血病的发病机制及预后研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 631-640. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||