上海交通大学学报(医学版), 2024, 44(12): 1514-1525 doi: 10.3969/j.issn.1674-8115.2024.12.004

论著 · 基础研究

GPR87通过激活RHO/ROCK通路促进非小细胞肺癌的侵袭和迁移

刘晨茜,1,2, 韩林,3, 杨轶1,2, 周韩1,2, 刘亚云,1,2, 盛德乔,1,2

1.三峡大学肿瘤微环境与免疫治疗湖北省重点实验室,宜昌 443002

2.三峡大学基础医学院,宜昌 443002

3.三峡大学第一临床医学院,湖北省宜昌市中心人民医院病理科,宜昌 443002

GPR87 promotes invasion and migration through the RHO/ROCK pathway in non-small cell lung cancer

LIU Chenxi,1,2, HAN Lin,3, YANG Yi1,2, ZHOU Han1,2, LIU Yayun,1,2, SHENG Deqiao,1,2

1.Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China

2.College of Basic Medical Science, China Three Gorges University, Yichang 443002, China

3.Department of Pathology, Yichang Central People's Hospital and The First College of Clinical Medical Science, China Three Gorges University, Yichang 443002, China

通讯作者: 盛德乔,电子信箱:834309103@qq.com刘亚云,电子信箱:liuyyctgu@ctgu.edu.cn

第一联系人: (刘晨茜、韩 林并列第一作者)

编委: 徐敏

收稿日期: 2024-02-26   接受日期: 2024-08-05   网络出版日期: 2024-12-28

基金资助: 湖北省科技厅自然科学基金青年基金项目.  2021CFB065
肿瘤微环境与免疫治疗湖北省重点实验室开放基金.  2023KZL025

Corresponding authors: SHENG Deqiao, E-mail:834309103@qq.comLIU Yayun, E-mail:liuyyctgu@ctgu.edu.cn.

Received: 2024-02-26   Accepted: 2024-08-05   Online: 2024-12-28

作者简介 About authors

刘晨茜(1995—),女,硕士生;电子信箱:381212026@qq.com E-mail:381212026@qq.com

韩林(1974—),男,硕士生;电子信箱:527982635@qq.com。 E-mail:527982635@qq.com

摘要

目的·探究GPR87在调节非小细胞肺癌(non-small cell lung cancer,NSCLC)侵袭和迁移中的作用及分子机制。方法·利用生物信息学方法,包括GEO、UALCAN、KM Plotter等多个公共数据库分析平台,筛选与NSCLC侵袭相关的候选基因,并预测基因与NSCLC的临床相关性。收集宜昌市中心人民医院2018年1月—2020年8月收治的80例NSCLC临床样本及对应的临床病理资料,利用免疫组化分析肿瘤组织中GPR87的表达,并对GPR87的临床相关性进行分析。用siRNA-GPR87和pCMV-GPR87-his分别转染人肺腺癌细胞系A549和人肺鳞状细胞癌细胞系SK-MES-1,构建低表达和高表达GPR87的细胞系,运用Transwell实验探究GPR87的表达对NSCLC细胞的迁移、侵袭能力的影响,通过酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测细胞培养上清液中MMP7的分泌量,用RT-qPCR检测GPR87、MMP2、MMP7、MMP9、E-cadherinN-cadherinvimentinsnailtwist、RHOA、RHOC、ROCK1的mRNA表达水平,用ELISA检测MMP7的蛋白分泌量,用Western blotting检测GPR87、MMP9、E-cadherin、vimentin、RHOA、ROCK1的蛋白表达水平。结果·生信分析和临床样本的数据显示,GPR87 mRNA和蛋白在NSCLC中高表达,且会导致患者临床分期更差、更易发生淋巴结转移,提示GPR87可能是NSCLC高侵袭性的关键基因。GPR87表达下调可显著降低A549和SK-MES-1细胞的侵袭和迁移能力,而过表达GPR87可增强A549和SK-MES-1细胞的侵袭和迁移能力。进一步检测发现,GPR87的下调导致A549和SK-MES-1细胞中MMP2、MMP7、MMP9、RHOA、RHOCROCK1的mRNA表达水平,MMP7的蛋白分泌量,MMP9、RHOA、ROCK1的蛋白表达水平降低;过表达GPR87增加了细胞MMP2、MMP7、MMP9、RHOA、RHOCROCK1的mRNA表达水平、MMP7的蛋白分泌量、MMP9、RHOA、ROCK1的蛋白表达水平。无论GPR87敲低或者过表达,上皮间质转化相关基因和蛋白的表达均无明显变化。结论·GPR87的高表达与NSCLC的高侵袭性密切相关。在SK-MES-1和A549细胞中,GPR87可通过激活RHOA/ROCK1信号通路,促进MMPs的表达,最终促进NSCLC的侵袭与迁移。

关键词: GPR87 ; 非小细胞肺癌 ; 侵袭 ; 迁移 ; RHO/ROCK通路

Abstract

Objective ·To explore the role and molecular mechanism of GPR87 in regulating the invasion and migration of non-small cell lung cancer (NSCLC). Methods ·Bioinformatics methods, including GEO, UALCAN, KM Plotter and other public database analysis platforms, were used to screen candidate genes related to NSCLC invasion and predict their clinical relevance to NSCLC. Eighty NSCLC clinical patient samples and corresponding clinical pathological data were collected from Yichang Central People's Hospital from January 2018 to August 2020. Immunohistochemistry was used to analyze the expression of GPR87 in tumor tissues and the clinical relevance of GPR87 was analyzed. siRNA-GPR87 and pCMV-GPR87-his were transfected into the human lung adenocarcinoma cell line A549 and the human lung squamous cell carcinoma cell line SK-MES-1, to construct cell lines with low and high expression of GPR87. Transwell assay was used to investigate the effect of GPR87 expression on the migration and invasion ability of NSCLC cells. ELISA was used to detect the secretion of MMP7 in the culture supernatant. RT-qPCR was used to detect the mRNA expression levels of GPR87, MMP2, MMP7, MMP9, E-cadherin,N-cadherin, vimentin,snail,twist, RHOA, RHOC, and ROCK1. ELISA was used to detect the secreted protein MMP7. Western blotting was used to detect the protein expression levels ofGPR87, MMP9, E-cadherin, vimentin, RHOA, and ROCK1. Results ·Bioinformatics analysis of clinical sample data showed that GPR87 was highly expressed in NSCLC. Patients with higher expression of GPR87 had worse clinical stage and were more prone to lymph node metastasis, suggesting that GPR87 might be a key gene for the high invasiveness of NSCLC. Downregulation of GPR87 expression significantly reduced the invasion and migration ability of A549 and SK-MES-1 cells, while overexpression of GPR87 enhanced the invasion and migration ability of A549 and SK-MES-1 cells. Further detection revealed that downregulation of GPR87 led to decreased mRNA expression levels of MMP2, MMP7, MMP9, RHOA, RHOC, and ROCK1, as well as a reduction in the secretion of MMP7 and the protein expression levels of MMP9, RHOA, and ROCK1 in A549 and SK-MES-1 cells. Overexpression of GPR87 increased the mRNA expression levels of MMP2, MMP7, MMP9, RHOA, RHOC, and ROCK1, as well as the secretion of MMP7 and the protein expression levels of MMP9, RHOA, and ROCK1. Regardless of GPR87 knockdown or overexpression, the expression of genes and proteins related to epithelial-mesenchymal transition (EMT) in the cells did not change significantly. Conclusion ·High expression of GPR87 is closely related to the high invasiveness of NSCLC. In SK-MES-1 and A549 cells, GPR87 can activate the RHOA/ROCK1 signaling pathway, promote the expression of MMPs, and ultimately promote the invasion and migration of NSCLC.

Keywords: GPR87 ; non-small cell lung cancer (NSCLC) ; invasion ; migration ; RHO/ROCK signaling pathway

PDF (7860KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘晨茜, 韩林, 杨轶, 周韩, 刘亚云, 盛德乔. GPR87通过激活RHO/ROCK通路促进非小细胞肺癌的侵袭和迁移. 上海交通大学学报(医学版)[J], 2024, 44(12): 1514-1525 doi:10.3969/j.issn.1674-8115.2024.12.004

LIU Chenxi, HAN Lin, YANG Yi, ZHOU Han, LIU Yayun, SHENG Deqiao. GPR87 promotes invasion and migration through the RHO/ROCK pathway in non-small cell lung cancer. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(12): 1514-1525 doi:10.3969/j.issn.1674-8115.2024.12.004

肺癌是全球最常见的恶性肿瘤之一,其发病率及病死率逐年攀升1。非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌总量的80%~85%,主要包括肺腺癌(lung adenocarcinoma,LUAD)及肺鳞状细胞癌(lung squamous cell carcinoma,LUSC)。尽管靶向治疗、分子免疫治疗等新兴治疗手段被不断应用,但是NSCLC的高侵袭性和易转移性使得患者的5年生存率仍然不足20%2。寻找与侵袭转移相关的分子靶点,对于改善NSCLC的治疗现状至关重要3

随着细胞测序技术的快速发展和广泛应用,大量的公共生物数据库相继建立,为系统地发现新的分子靶点提供了方便4。本研究采用GEO数据库对NSCLC组织数据集GSE33532进行差异表达基因分析,结合GEPIA、UALCAN、KM Plotter等在线分析网站,筛选出与NSCLC患者生存、预后及淋巴结转移密切相关的候选基因G蛋白偶联受体87(G protein-coupled receptor 87,GPR87)。

GPR87属于细胞膜表面的G蛋白偶联受体(G protein-coupled receptor,GPCR)家族,在多种恶性肿瘤中均有高表达,对细胞存活起关键作用5GPR87的高表达与NSCLC细胞增殖密切相关6。组蛋白H3F3A可通过结合GPR87的启动子促进GPR87的表达,进而促进NSCLC的侵袭转移7。研究5发现,NSCLC中GPR87的表达与免疫浸润呈正相关,并能促进肿瘤的侵袭。肿瘤侵袭受多种细胞因子和信号通路的调控8GPR87与NSCLC侵袭具体的机制尚有待探究。

本研究拟探究GPR87的表达与SK-MES-1和A549细胞的侵袭和转移、基质金属蛋白酶(matrix metalloproteinases,MMPs)表达、上皮间质转化(epithelial-mesenchymal transition,EMT)和RHO/ROCK信号通路的关系,阐明GPR87在NSCLC侵袭中的作用机制,为抑制NSCLC的侵袭转移治疗提供新的靶点。

1 资料与方法

1.1 生物信息学分析

选择GEO数据库的数据集GSE33532筛选与NSCLC侵袭及转移相关的差异表达基因,使用KM plotter网站进行差异基因与患者的生存分析、GEPIA数据库分析候选基因在NSCLC中的表达、UALCANA网站分析候选基因与NSCLC的临床相关性。通过CCLE网站对已知的NSCLC细胞系的候选基因表达进行预测。

1.2 临床样本分析

收集2018年1月—2020年8月湖北省宜昌市中心人民医院病理科的NSCLC临床样本80例及对应的临床病理资料。对80例肿瘤石蜡样本及癌旁正常组织使用GPR87抗体(1∶500;Abcam,美国)进行免疫组化分析,采用二氨基联苯胺(diaminobenzidine,DAB)显色,苏木精复染。评分标准由阳性染色的肿瘤细胞数量和染色强度决定。阳性细胞染色比例:≤5%为0分,6%~25%为1分,26%~50%为2分,51%~75%为3分,76%~100%为4分。染色强度:0分为无着色,1分为淡黄色,2分为棕黄色,3分为黄褐色。两者乘积等于0为阴性,1~4分为弱阳性,5~8分为中等阳性,9~12分为强阳性。结合免疫组化的结果及患者的临床病理资料(病理分型、年龄、性别、吸烟情况、分化程度、临床分期、淋巴结转移情况),分析GPR87与NSCLC的临床相关性。

1.3 细胞培养及建模处理

人腺癌细胞系A549和人鳞癌细胞系SK-MES-1购自武汉大学中国典型培养物保藏中心。A549用高糖DMEM(Gibco,美国)培养,SK-MES-1用MEM(Gibco,美国)培养,培养基中添加10%胎牛血清(Hyclone,美国)、100 U/mL青霉素/链霉素(Gibco,美国)和2 mmol/L的L-谷氨酰胺(索莱宝,北京),培养箱条件设置为37 ℃、5% CO2

当细胞汇合到80%后,按每孔2×105个细胞接种到6孔板中,用siRNA或质粒处理。siRNA序列如表1所示。质粒pCMV-Vector-his和pCMV-GPR87-his(义翘神州,北京)。按照转染试剂(Thermo Fisher,美国)的操作说明进行转染。细胞转染4~6 h,用完全培养基培养适当时间后进行后续检测。

表1   siRNA序列

Tab 1  Sequences of siRNA

NameForward (5'→3')Reverse (5'→3')
siRNA-GPR87-1GACCUUAGUUUCAAAGCUUdTdTAAGCUUUGAAACUAAGGUCdTdT
siRNA-GPR87-2GCAUCUUGCUGAAUGGUUUdTdTAAACCAUUCAGCAAGAUGCdTdT
NC-siRNAUUCUCCGAACGUGUCACGUTTACGUGACACGUUCGGAGAATT

新窗口打开| 下载CSV


1.4 Transwell检测迁移和侵袭

为评估细胞的迁移活性,经siRNA或质粒处理的细胞培养24 h后,用不含血清的培养基按每孔4×105个细胞接种到Transwell小室中,小室的孔径为8 μm,下室添加完全培养基。孵育24 h后,取出小室,清除未穿孔的细胞,用多聚甲醛固定、结晶紫溶液染色,拍照,用Image J软件扫描紫色面积,重复3次,统计结果。

为评估细胞的侵袭活性,将经siRNA或质粒处理的细胞培养24 h,用不含血清的培养基按8×105个/孔细胞接种到Transwell小室中,小室提前24 h铺好Matrigel基质胶(BD Biosciences,美国),小室的孔径为8 μm,下室添加完全培养基。孵育24 h后,取出小室,清除未穿孔的细胞,用多聚甲醛固定、结晶紫溶液染色,拍照,用Image J软件扫描紫色面积,重复3次,统计结果。

1.5 ELISA

经siRNA或质粒处理的细胞继续培养48 h,取1 mL培养上清液,使用ELISA试剂盒(博士德,武汉)检测细胞MMP7的分泌量。重复实验3次后进行数据分析。

1.6 RT-qPCR

经siRNA或质粒处理的细胞继续培养48 h,收集细胞,用Trizol(Takara,日本)提取RNA。取2 μg RNA按照反转录试剂盒(诺唯赞,南京)的操作说明反转录为40 μL cDNA,再以cDNA为模板使用SYBR qPCR Master Mix(诺唯赞,南京)进行qPCR。GPR87、MMP2、MMP7、MMP9、E-cadherin、N-cadherin、vimentin、snail、twist、RHOA、RHOC、ROCK1、β-actin的引物序列(生工,上海)如表2所示。以β-actin为内参基因,用2‑ΔΔCt法计算目的基因的mRNA表达量。

表2   RT-qPCR引物序列

Tab 2  Sequences of primers for RT-qPCR

GeneForward (5'→3')Reverse (5'→3')
GPR87GGAGGCGACATCAATGCAGAAATGAAAGTAAAGAACGATTTTGTGT
MMP2GCTGGAGACAAATTCTGGAGATACAGTATCGAAGGCAGTGGAGAGGA
MMP7GAGTGAGCTACAGTGGGAACACTATGACGCGGGAGTTTAACAT
MMP9GCCACTACTGTGCCTTTGAGTCCCCTCAGAGAATCGCCAGTACT
E-cadherinGCCTCCTGAAAAGAGAGTGGAAGTGGCAGTGTCTCTCCAAATCCG
N-cadherinCCTCCAGAGTTTACTGCCATGACGTAGGATCTCCGCCACTGATTC
vimentinAGGCAAAGCAGGAGTCCACTGAATCTGGCGTTCCAGGGACTCAT
snailTGCCCTCAAGATGCACATCCGAGGGACAGGAGAAGGGCTTCTC
twistGCCAGGTACATCGACTTCCTCTTCCATCCTCCAGACCGAGAAGG
RHOAGCAGGTAGAGTTGGCTTTATGGCTTGTGTGCTCATCATTCCGA
RHOCAAGACGAGCACACCAGGAGAGATTGGCTGAGCACTCAAGGTAGC
ROCK1GAAACAGTGTTCCATGCTAGACGGCCGCTTATTTGATTCCTGCTCC
β-actinCTGGAACGGTGAAGGTGACAAAGGGACTTCCTGTAACAACGCA

新窗口打开| 下载CSV


1.7 Western blotting

经siRNA或质粒处理的细胞培养48 h,收集细胞,用含有PMSF(博士德,武汉)的RIPA(博士德,武汉)提取总蛋白,使用BCA试剂盒(Thermo Fisher,美国)进行蛋白质定量。使用SDS-PAGE分离蛋白,接着把蛋白转移至PVDF膜(GE Amersham,美国)。用5%的脱脂牛奶(碧云天,上海)封闭PVDF膜,在4 ℃孵育一抗过夜:MMP9抗体(1∶1 000;三鹰,武汉)、vimentin抗体(1∶1 000;三鹰,武汉)、RHOA抗体(1∶1 000;三鹰,武汉)、ROCK1抗体(1∶1 000;三鹰,武汉)、β-actin抗体(1∶1 000;三鹰,武汉)、GPR87抗体(1∶1 000;Abcam,美国)、E-cadherin抗体(1∶500,Abcam,美国)。室温孵育二抗(1∶3 000;三鹰,武汉)1 h,用ECL试剂盒(Thermo Fisher,美国)进行蛋白检测,利用Image J软件对结果进行灰度扫描。

1.8 统计学分析

实验数据均采用SPSS 22.0统计学软件进行分析处理,每组数据均进行3次独立重复试验,用x±s表示;2组样本比较采用t检验。P<0.05表示结果具有统计学意义。

2 结果

2.1 生物信息学分析结果

利用GEO自带的分析软件GEO2R对数据集GSE33532进行分析。该数据集包含了20个按淋巴转移和无淋巴转移分组的NSCLC样本,以高侵袭性和低侵袭性分组,设定阈值为Padj<0.05,|logFC|>2,得到10个差异表达基因(表3)。利用KM plotter对上述10个基因进行生存分析,结果显示,10个差异基因中有2个与患者的生存率相关,即219936_s_at(GPR87)和205048_s_at(PSPH)(图1A、B)。其中GPR87HR>1,说明GPR87的高表达与预后不良相关。生信分析结果表明GPR87是与NSCLC高侵袭性相关的候选基因。

表3   NSCLC转移及预后相关的差异表达基因

Tab 3  DEGs associated with metastasis and prognosis in NSCLC

IDPadjP valuelogFCGene symbol
219936_s_at3.47×10-52.32×10-72.43GPR87
212094_at1.24×10-54.70×10-82.36PEG10
209278_s_at1.63×10-21.53×10-32.22TFPI2
227506_at1.25×10-55.17×10-82.14SLC16A9
206023_at3.69×10-46.62×10-62.12NMU
205048_s_at3.22×10-31.44×10-42.02PSPH
220393_at7.91×10-35.37×10-4-2.05LGSN
213432_at1.33×10-33.96×10-5-2.17MUC5B
225728_at2.93×10-44.65×10-6-2.23SORBS2
203824_at1.38×10-34.19×10-5-2.25TSPAN8

新窗口打开| 下载CSV


图1

图1   GPR87NSCLC的生物信息学分析

NoteGPR87 (A) and PSPH (B) were found to correlate with poor survival in NSCLC population with KM plotter. GPR87 mRNA levels in LUAD and LUSC (C) were both overexpressed, according to the GEPIA database. High expression of GPR87 was associated with poor clinical stage (D), age (E), race (F) and TP53 mutation status (G) in patients with LUAD, and with lymph node metastasis in patients with LUSC (H) in UALCAN database. Error bars represent the x±s. P=0.032, P=0.026, compared with the adjacent normal tissues.P=0.006, compared with stage1 LUAD patients. P<0.001, compared with the 21‒40 year-old patients. P=0.005, P<0.001, compared with Caucasian patients. P<0.001, compared with the TP53-mutant group. P=0.007,P=0.005, P=0.004, compared with the N3-lymph node metastasis patients.

Fig 1   Bioinformatics analysis of GPR87 and NSCLC


利用UALCAN网站分析GPR87基因的表达与NSCLC的临床相关性。在GEPIA数据库中包含的483例LUAD和486例LUSC样本,均显示GPR87的mRNA相对于正常样本过表达(图1C)。在UALCAN中对GPR87和NSCLC之间的临床特征进行分析,结果显示GPR87的高表达与LUAD患者的临床分期、年龄、种族以及TP53突变状态有关,与LUSC患者的淋巴结转移状态也有关(图1D~H)。

2.2 临床样本分析结果

对80例NSCLC肿瘤及其相邻正常组织进行免疫组化分析,以确定GPR87的蛋白表达。结果如图2表4所示,肿瘤的GPR87阳性率为63.8%,相邻正常组织中均为阴性。结果表明,GPR87在NSCLC肿瘤组织中的表达高于相邻正常组织(P<0.001)。

图2

图2   GPR87蛋白在NSCLC临床样本中的表达

Note: Protein expression of GPR87 in 80 NSCLC samples was upregulated compared to adjacent non-tumor tissues, as shown by IHC staining. LUAD—lung adenocarcinoma; LUSC—lung squamous cell carcinoma. Line 1, ×200; line 2, ×400.

Fig 2   Expression of GPR87 protein in NSCLC samples


表4   GPR87NSCLC肿瘤组织及癌旁正常组织中的蛋白表达量

Tab 4  Protein expression levels of GPR87 in NSCLC tumors and adjacent non-tumor tissues

GroupCase/nExpression of GPR87/nχ2P value
HighLow
Tissue of NSCLC80512974.862<0.001
Adjacent non-tumor tissues80080

新窗口打开| 下载CSV


为了进一步揭示GPR87与NSCLC患者临床病理特征之间的关系,我们分析了上述80例临床样本的临床病理数据(病理类型、年龄、性别、吸烟状况、分化程度、临床分期、淋巴结转移情况),如表5所示。GPR87的表达在不同临床分期(P=0.001)和淋巴结转移状态(P=0.019)之间差异有统计学意义,但在不同病理类型、年龄、性别、吸烟状况以及分化程度之间差异无统计学意义。结果表明,与低表达GPR87的患者相比,高表达GPR87的NSCLC患者临床分期更晚、更易发生淋巴结转移。

表5   GPR87NSCLC患者的临床相关性分析

Tab 5  The relevance of GPR87 expression to clinicopathological characteristics in NSCLC patients

FactorCase/nExpression of GPR87/nχ2P value
HighLow
Subgroup1.5240.217
LUAD482820
LUSC32239
Age/year0.1970.657
≥65362214
<65442915
Gender0.4420.506
Male483216
Female321913
Smoking0.5480.459
Yes/ever432914
No372215
Differentiation1.8470.174
Good1156
Middle/poor694623
Stage10.4980.001
Ⅰ/Ⅱ653629
Ⅲ/Ⅳ15150
Lymphatic metastasis5.4850.019
No502723
Yes30246

新窗口打开| 下载CSV


2.3 不同NSCLC细胞模型中 GPR87 mRNA和蛋白的表达分析

为了选择合适的细胞模型,利用CCLE网站预测GPR87在NSCLC细胞系中的表达量,发现SK-MES-1的GPR87表达量最高,A549次之(图3A)。通过RT-qPCR和Western blotting进行验证,得到了相同的结果(图3B、C)。

图3

图3   GPR87 mRNA和蛋白在不同NSCLC细胞模型中的表达分析

Note: Relative mRNA expression of GPR87 in SK-MES-1 and A549 cells, as predicted by CCLE (A), analyzed by RT-qPCR analysis (B), and relative protein expression of GPR87 by Western blotting analysis (C). Relative mRNA expression of GPR87 by RT-qPCR analysis (D) and relative protein expression of GPR87 by Western blotting analysis (E) in SK-MES-1 cells treated with siRNA-GPR87. GPR87 protein expression in A549 cells treated with pCMV-GPR87-his by Western blotting analysis (F). Error bars represent the x±s. P=0.037, P=0.008, compared with SK-MES-1.P<0.001, compared with SK-MES-1. P=0.008, P=0.005, P=0.006, compared with control group. P<0.001, compared with control group.

Fig 3   Analysis of GPR87 mRNA and protein expression in NSCLC cell models


用不同剂量(100、200 pmol/L)的siRNA-GPR87-1和siRNA-GPR87-2转染SK-MES-1,培养48 h后检测GPR87 mRNA和蛋白的表达水平,发现100 pmol/L siRNA-GPR87-2处理组的敲低效果最好(图3D、E),故选择该处理建立敲减模型。

将pCMV-GPR87-his以不同剂量(1 μg/mL、2 μg/mL)转染A549 48 h,检测GPR87的表达水平,结果显示,1 μg/mL处理组GPR87过表达效果优于2 μg/mL处理组(图3F),故选择1 μg/mL pCMV-GPR87-his处理细胞建立过表达模型。

2.4 Transwell检测 GPR87NSCLC细胞迁移和侵袭的影响

用siRNA-GPR87分别转染SK-MES-1和A549,结果显示,处理组的迁移(图4A)和侵袭(图4B)细胞数量均低于对照组。用pCMV-GPR87-his分别转染SK-MES-1和A549,结果显示处理组的迁移(图4C)和侵袭(图4D)细胞数量高于正常对照组。这些结果表明GPR87可能促进NSCLC细胞株的迁移和侵袭。

图4

图4   Transwell检测 GPR87NSCLC细胞迁移和侵袭的影响

Note: Representative images (×200) and quantification of migrated (A) and invaded (B) cells, analyzed by using the Transwell matrix penetration assay in SK-MES-1 and A549 cells treated with siRNA-GPR87. Representative images (×200) and quantification of migrated (C) and invaded (D) cells, analyzed by Transwell matrix penetration assay in SK-MES-1 and A549 cells treated with pCMV-GPR87-his. Error bars represent the x±s. P<0.001, compared with the NC group. P=0.008, compared with the Vector group. P<0.001, compared with the Vector group.

Fig 4   Effect of GPR87 on migration and invasion in NSCLC cell lines by the Transwell assay


2.5 ELISART-qPCRWestern blotting检测 GPR87NSCLC细胞MMPs表达的影响

用siRNA-GPR87分别转染SK-MES-1和A549细胞,结果显示SK-MES-1处理组细胞培养上清液中MMP2MMP7MMP9 mRNA表达量显著降低(图5A), SK-MES-1和A549处理组细胞培养上清液中MMP7的分泌量和活化MMP9蛋白的表达量均降低(图5B~D)。用pCMV-GPR87-his分别转染SK-MES-1和A549细胞,结果显示,A549处理组中MMP7MMP9的mRNA表达上调(图5E),SK-MES-1和A549处理组细胞培养MMP7的分泌量和active-MMP9蛋白的表达量均上调(图5F~H)。提示GPR87可能上调MMPs的表达水平。

图5

图5   GPR87NSCLC细胞MMPs表达的影响

Note: A. The mRNA expression of MMP2, MMP7 and MMP9 in SK-MES-1 cells treated with siRNA-GPR87 was decreased, as detected by RT-qPCR. B. The protein expression of MMP7 in the supernatant of SK-MES-1 and A549 cells treated with siRNA-GPR87 was decreased, as detected by ELISA. The protein expression of active-MMP9 and GPR87 was decreased in SK-MES-1 (C) and A549 cells (D) treated with siRNA-GPR87, as detected by Western blotting. E. The mRNA expression of MMP2, MMP7 and MMP9 was increased in A549 cells treated with pCMV-GPR87-his, as detected by RT-qPCR. F. The protein expression of MMP7 in the supernatant of SK-MES-1 and A549 cells treated with pCMV-GPR87-his was increased, as detected by ELISA. The protein expression of active-MMP9 and GPR87 was increased in A549 (G) and SK-MES-1 cells (H) treated with pCMV-GPR87-his, as detected by Western blotting. Error bars represent the x±s. P<0.001, P=0.008, P=0.013,P=0.041, P=0.009, P=0.043, compared with the NC group. P=0.007, P<0.001, P=0.003, P=0.002, 11P=0.005, 12P=0.008, 13P=0.001, 14P=0.021, compared with the Vector group.

Fig 5   Effect of GPR87 on the expression of MMPs in NSCLC cell lines


2.6 RT-qPCRWestern blotting检测 GPR87NSCLC细胞EMT的影响

用siRNA-GPR87转染细胞SK-MES-1,结果显示处理组细胞上皮细胞标志物E-cadherin、间质细胞标志物N-cadherin、vimentin、snail、twist的mRNA水平和E-cadherin、vimentin的蛋白水平均无变化(图6A、B)。用pCMV-GPR87-his转染细胞A549,结果显示处理组细胞E-cadherin、N-cadherin、vimentin的mRNA水平和E-cadherin、vimentin的蛋白水平均无变化(图6C、D)。这些结果表明GPR87对NSCLC细胞的EMT没有影响。

图6

图6   GRP87NSCLC细胞EMT的影响

Note: The mRNA expression (A) of E-cadherin, N-cadherin, vimentin, snail, and twist, and the protein expression (B) of E-cadherin and vimentin did not change in SK-MES-1 cells treated with siRNA-GPR87. The mRNA expression of E-cadherin, N-cadherin, and vimentin (C), and the protein expression of E-cadherin and vimentin (D) did not change in A549 cells treated with pCMV-GPR87-his. Error bars represent the x±s. P<0.001, compared with the NC group. P=0.008, compared with the Vector group.

Fig 6   Effect of GPR87 on EMT in NSCLC cell lines


2.7 RT-qPCRWestern blotting检测 GPR87NSCLC细胞RHO/ROCK通路的影响

用siRNA-GPR87转染SK-MES-1和A549细胞,结果显示处理组SK-MES-1的RHOARHOCROCK1 mRNA表达水平下调(图7A),SK-MES-1和A549的RHOA和ROCK1蛋白表达水平降低(图7B)。用pCMV-GPR87-his转染SK-MES-1和A549,结果显示处理组A549中RHOARHOCROCK1 mRNA表达水平上调(图7C),SK-MES-1和A549中RHOA和ROCK1蛋白表达水平升高(图7D)。提示GPR87可能激活NSCLC细胞株的RHO/ROCK信号通路。

图7

图7   GPR87NSCLC细胞RHO/ROCK通路的影响

Note: A. The mRNA expression of RHOA, RHOC and ROCK1 was decreased in SK-MES-1 cells treated with siRNA-GPR87. B. The protein expression of RHOA and ROCK1 in SK-MES-1 and A549 cells treated with siRNA-GPR87 was decreased, as detected by Western blotting. C. The mRNA expression of RHOA, RHOC and ROCK1 in A549 cells treated with pCMV-GPR87-his was increased. D. The protein expression of RHOA and ROCK1 was increased in SK-MES-1 and A549 cells treated with pCMV-GPR87-his, as detected by Western blotting. Error bars represent the x±s.P=0.008, P=0.035, P=0.041, P=0.005, P<0.001, P=0.019,P=0.026, compared with the NC group.P=0.003,P=0.002, P=0.007, 11P<0.001, 12P=0.008, compared with the Vector group.

Fig 7   Effect of GPR87 on the RHO/ROCK signaling pathway in NSCLC cell lines


3 讨论

侵袭和转移是NSCLC重要的生物学特征,也是决定肿瘤预后不良的首要因素1。虽然新一代靶向抗癌药物层出不穷,但这些药物主要是抑制肿瘤生长和促进细胞凋亡,对肿瘤转移的治疗极为有限8。筛选与转移相关的关键分子靶点,是改善NSCLC患者不良预后的重要方向。

结合生物信息学分析方法和80例临床NSCLC患者的检测数据,显示GPR87在NSCLC中高表达,且会导致患者临床分期差、更易发生淋巴结转移,提示GPR87可能是NSCLC高侵袭性的关键基因。GPR87属于GPCR家族,该家族是最大的细胞表面分子家族,参与肿瘤生长、血管生成和转移的调控9-10。在本研究中,我们发现GPR87可促进NSCLC的侵袭,这与其他GPCR家族成员的作用一致。GPR87下游参与多种信号通路,本研究通过在线网站分析相关通路,选取了MMPs、EMT以及RHO/ROCK信号通路,探讨GPR87介导的NSCLC侵袭转移机制。

MMPs是一类蛋白水解酶,在肿瘤侵袭转移过程中发挥重要作用11。MMP2和MMP9是降解细胞外基质中的层粘连蛋白的明胶酶之一。MMP7也被称为基质溶解素,主要降解细胞外基质和基底膜蛋白。文献12报道,在NSCLC中MMP2、MMP7和MMP9的高表达可促进转移,提示患者预后不良。本文研究了GPR87与A549和SK-MES-1中MMPs表达的关系,结果显示,敲低GPR87表达可下调细胞内MMP2、MMP7和MMP9的mRNA和MMP7、MMP9的蛋白水平,而在高表达GPR87的细胞中观察到这些指标均上调。本研究结果表明,GPR87可通过促进MMPs的表达,溶解细胞基质,增强NSCLC的侵袭能力。

EMT是指上皮细胞在形态学上向间充质细胞表型转变并获得迁移能力的过程,在多种恶性肿瘤的转移中发挥重要作用13-14。当EMT被激活时,肿瘤细胞的E-cadherin表达受到抑制,导致上皮细胞典型的多边形鹅卵石形态丧失,转变为间充质细胞形态的纺锤形,同时N-cadherin、vimentin表达上调15。有文献516报道EMT的激活可导致NSCLC的转移。本研究发现,无论GPR87上调还是下调,SK-MES-1和A549细胞中EMT相关标志物的表达都没有显著变化,这表明GPR87不通过EMT途径诱导NSCLC迁移。

RHO/ROCK信号通路在细胞增殖与凋亡、细胞骨架重组与收缩、细胞变形、运动及黏附中发挥重要作用17。RHOA和RHOC主要调控肌动蛋白聚合、基底膜分解和皮质收缩,ROCK1通过调节肌球蛋白磷酸化来重构肌动蛋白细胞骨架,通过迁移细胞的前缘和后缘调节细胞迁移18。本研究的结果显示,当GPR87在SK-MES-1和A549中低表达时,RHOA、RHOC和ROCK1的表达量相应地降低;当GPR87高表达时,RHOA、RHOC和ROCK1的表达也相应上调。这些结果与GPR87诱导Gα12/13-RHO/ROCK依赖性细胞迁移的报道一致19。该结果提示,GPR87可通过激活RHOA/ROCK1信号通路促进NSCLC细胞的迁移能力。

据报道,ROCK1的下游有许多信号分子,其中也包括MMPs。GPR87被激活后,可促进RHO/ROCK1/MMPs介导的卵巢癌细胞侵袭和迁移20。在前列腺癌中,ROCK1可通过靶向LIMK1和MMP2,促进PC-3和DU145细胞的侵袭和迁移21。根据本研究结果提示,GPR87可能通过激活RHOA/ROCK1信号通路,促进下游MMPs的表达,进而促进NSCLC的侵袭与转移。

综上,本研究发现:GPR87的高表达与NSCLC的侵袭和转移密切相关;在SK-MES-1和A549细胞中,GPR87可通过激活RHOA/ROCK1信号通路,促进MMPs的表达,最终促进NSCLC的侵袭与转移。

作者贡献声明

刘亚云、盛德乔参与实验设计;刘晨茜、韩林、周韩、杨轶参与实验操作;刘晨茜、韩林、周韩、杨轶参与数据采集及数据分析;刘晨茜、刘亚云、盛德乔参与论文的写作和修改。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by LIU Yayun and SHENG Deqiao. The experiments were conducted by LIU Chenxi, HAN Lin, ZHOU Han and YANG Yi. The data were collected and analyzed by LIU Chenxi, HAN Lin, ZHOU Han and YANG Yi. The manuscript was drafted and revised by LIU Chenxi, LIU Yayun and SHENG Deqiao. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022,72(1):7-33.

[本文引用: 2]

CAI Z J, ZHAN P, SONG Y, et al. Safety and efficacy of retreatment with immune checkpoint inhibitors in non-small cell lung cancer: a systematic review and meta-analysis[J]. Transl Lung Cancer Res, 2022, 11(8): 1555-1566.

[本文引用: 1]

YE Z C, HUANG Y M, KE J H, et al. Breakthrough in targeted therapy for non-small cell lung cancer[J]. Biomed Pharmacother, 2021, 133: 111079.

[本文引用: 1]

PRIESTLEY P, BABER J, LOLKEMA M P, et al. Pan-cancer whole-genome analyses of metastatic solid tumours[J]. Nature, 2019, 575(7781): 210-216.

[本文引用: 1]

BAI R, ZHANG J G, HE F J, et al. GPR87 promotes tumor cell invasion and mediates the immunogenomic landscape of lung adenocarcinoma[J]. Commun Biol, 2022, 5(1): 663.

[本文引用: 3]

KITA Y, GO T, NAKASHIMA N, et al. Inhibition of cell-surface molecular GPR87 with GPR87-suppressing adenoviral vector disturb tumor proliferation in lung cancer cells[J]. Anticancer Res, 2020, 40(2): 733-741.

[本文引用: 1]

PARK S M, CHOI E Y, BAE, et al. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation[J]. Nat Commun, 2016, 7: 12914.

[本文引用: 1]

LEE S, CHO M, PARK B, et al. Finding miRNA-RNA network biomarkers for predicting metastasis and prognosis in cancer[J]. Int J Mol Sci, 2023, 24(5): 5052.

[本文引用: 2]

GUTKIND J S, KOSTENIS E. Arrestins as rheostats of GPCR signalling[J]. Nat Rev Mol Cell Biol, 2018, 19(10): 615-616.

[本文引用: 1]

CHAUDHARY P K, KIM S. An insight into GPCR and G-proteins as cancer drivers[J]. Cells, 2021, 10(12): 3288.

[本文引用: 1]

SIDDHARTHA R, GARG M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions[J]. Toxicol Appl Pharmacol, 2021, 426: 115593.

[本文引用: 1]

MERCHANT N, NAGARAJU G P, RAJITHA B, et al. Matrix metalloproteinases: their functional role in lung cancer[J]. Carcinogenesis, 2017, 38(8): 766-780.

[本文引用: 1]

ALQURASHI Y E, AL-HETTY H R A K, RAMAIAH P, et al. Harnessing function of EMT in hepatocellular carcinoma: from biological view to nanotechnological standpoint[J]. Environ Res, 2023, 227: 115683.

[本文引用: 1]

MANSHOURI R, COYAUD E, KUNDU S T, et al. ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer[J]. Nat Commun, 2019, 10(1): 5125.

[本文引用: 1]

PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226.

[本文引用: 1]

TULCHINSKY E, DEMIDOV O, KRIAJEVSKA M, et al. EMT: a mechanism for escape from EGFR-targeted therapy in lung cancer[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(1): 29-39.

[本文引用: 1]

GUAN G Z, CANNON R D, COATES D E, et al. Effect of the rho-kinase/ROCK signaling pathway on cytoskeleton components[J]. Genes, 2023, 14(2): 272.

[本文引用: 1]

ZAKARIA M A, RAJAB N F, CHUA E W, et al. Roles of Rho-associated kinase in lung cancer (Review)[J]. Int J Oncol, 2021, 58(2): 185-198.

[本文引用: 1]

NISS ARFELT K, FARES S, SPARRE-ULRICH A H, et al. Signaling via G proteins mediates tumorigenic effects of GPR87[J]. Cell Signal, 2017, 30: 9-18.

[本文引用: 1]

JEONG K J, PARK S Y, CHO K H, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion[J]. Oncogene, 2012, 31(39): 4279-4289.

[本文引用: 1]

GONG H, ZHOU L, KHELFAT L, et al. Rho-associated protein kinase (ROCK) promotes proliferation and migration of PC-3 and DU145 prostate cancer cells by targeting LIM kinase 1 (LIMK1) and matrix metalloproteinase-2 (MMP2)[J]. Med Sci Monit, 2019, 25: 3090-3099.

[本文引用: 1]

/