上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (10): 1323-1329.doi: 10.3969/j.issn.1674-8115.2024.10.015
• 综述 • 上一篇
李钰1,2(), 姜艺凡1, 童荣亮1, 陈迪宇1, 吴健1,2()
收稿日期:
2024-03-14
接受日期:
2024-06-04
出版日期:
2024-10-28
发布日期:
2024-10-28
通讯作者:
吴健
E-mail:li_yu@zju.edu.cn;drwujian@zju.edu.cn
作者简介:
李 钰(1998—),男,硕士生;电子信箱:li_yu@zju.edu.cn。
基金资助:
LI Yu1,2(), JIANG Yifan1, TONG Rongliang1, CHEN Diyu1, WU Jian1,2()
Received:
2024-03-14
Accepted:
2024-06-04
Online:
2024-10-28
Published:
2024-10-28
Contact:
WU Jian
E-mail:li_yu@zju.edu.cn;drwujian@zju.edu.cn
Supported by:
摘要:
FOXM1(forkhead box M1)是FOX转录因子家族中的重要成员,其已被证实通过转录调控作用影响诸多肿瘤细胞演进。此外,FOXM1高表达与多种癌症不良预后相关,其参与调控基因表达,细胞增殖、侵袭、转移和凋亡等多种生物学过程。肿瘤细胞中的代谢重编程是肿瘤的重要特征,决定了肿瘤细胞的存活、生长和增殖。随着研究的不断深入,越来越多的证据提示FOXM1在调节肿瘤细胞增殖与代谢之间起“桥梁”作用,成为衔接肿瘤细胞生物行为学与代谢的枢纽。该文对FOXM1与肿瘤细胞代谢关系的研究进展进行综述,旨在为研发基于FOXM1的新型靶向药物提供理论参考。
中图分类号:
李钰, 姜艺凡, 童荣亮, 陈迪宇, 吴健. FOXM1与肿瘤代谢关系的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1323-1329.
LI Yu, JIANG Yifan, TONG Rongliang, CHEN Diyu, WU Jian. Research progress in the relationship between FOXM1 and neoplasm metabolism[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1323-1329.
1 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
2 | 关永俊, 余佳, 王卫星. 转录因子与肿瘤代谢重编程的研究进展[J]. 腹部外科, 2022, 35(2): 136-140. |
GUAN Y J, YU J, WANG W X. Research advances of transcription factors and tumor metabolic reprogramming[J]. Journal of Abdominal Surgery, 2022, 35(2): 136-140. | |
3 | BACH D H, LONG N P, LUU T T, et al. The dominant role of forkhead box proteins in cancer[J]. Int J Mol Sci, 2018, 19(10): E3279. |
4 | LIAO G B, LI X Z, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer[J]. Cell Commun Signal, 2018, 16(1): 57. |
5 | ABDELJAOUED S, BETTAIEB I, NASRI M, et al. Overexpression of FOXM1 is a potential prognostic marker in male breast cancer[J]. Oncol Res Treat, 2017, 40(4): 167-172. |
6 | EGAWA M, YOSHIDA Y, OGURA S, et al. Increased expression of Forkhead box M1 transcription factor is associated with clinicopathological features and confers a poor prognosis in human hepatocellular carcinoma[J]. Hepatol Res, 2017, 47(11): 1196-1205. |
7 | ITO T, KOHASHI K, YAMADA Y, et al. Prognostic significance of forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in angiosarcoma[J]. J Cancer, 2016, 7(7): 823-830. |
8 | KONG F F, QU Z Q, YUAN H H, et al. Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer[J]. Oncol Rep, 2014, 31(6): 2660-2668. |
9 | TASSI R A, TODESCHINI P, SIEGEL E R, et al. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J]. J Exp Clin Cancer Res, 2017, 36(1): 63. |
10 | ZHANG H, ZHONG H, LI L, et al. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer[J]. Mol Med Rep, 2016, 13(3): 2696-2700. |
11 | GARBER K. Energy deregulation: licensing tumors to grow[J]. Science, 2006, 312(5777): 1158-1159. |
12 | CHEN J Q, RUSSO J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells[J]. Biochim Biophys Acta, 2012, 1826(2): 370-384. |
13 | CUI J, SHI M, XIE D, et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression[J]. Clin Cancer Res, 2014, 20(10): 2595-2606. |
14 | JIANG W, ZHOU F, LI N, et al. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression[J]. Int J Clin Exp Pathol, 2015, 8(6): 6756-6763. |
15 | SHANG R, PU M, LI Y, et al. FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression[J]. Oncol Rep, 2017, 37(4): 2261-2269. |
16 | WANG Y, YUN Y, WU B, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription[J]. Oncotarget, 2016, 7(30): 47985-47997. |
17 | KUAI X Y, LEI Z Y, LIU X S, et al. The interaction of GLUT1 and FOXM1 leads to a poor prognosis in colorectal cancer[J]. Anticancer Agents Med Chem, 2020, 20(8): 941-950. |
18 | WANG K, DAI X, YU A, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression[J]. J Exp Clin Cancer Res, 2022, 41(1): 289. |
19 | ZHANG W, ZHANG X, HUANG S, et al. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis[J]. Mol Oncol, 2021, 15(5): 1466-1485. |
20 | JIANG Z P, HU H, HU W L, et al. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer[J]. Cancer Cell Int, 2021, 21(1): 596. |
21 | CHENG Y, SUN F M, THORNTON K, et al. FOXM1 regulates glycolysis and energy production in multiple myeloma[J]. Oncogene, 2022, 41: 3899-3911. |
22 | HAO Y, LI D, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data[J]. BMC Bioinformatics, 2019, 20(suppl 7): 195. |
23 | EZZEDDINI R, TAGHIKHANI M, SOMI M H, et al. Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma[J]. Life Sci, 2019, 224: 169-176. |
24 | JIA J, CHE L, CIGLIANO A, et al. Pivotal role of fatty acid synthase in c-MYC driven hepatocarcinogenesis[J]. Int J Mol Sci, 2020, 21(22): E8467. |
25 | ASSAILY W, RUBINGER D A, WHEATON K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J]. Mol Cell, 2011, 44(3): 491-501. |
26 | FAJAS L, LANDSBERG R L, HUSS-GARCIA Y, et al. E2Fs regulate adipocyte differentiation[J]. Dev Cell, 2002, 3(1): 39-49. |
27 | DE OLANO N, KOO C Y, MONTEIRO L J, et al. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment[J]. Mol Cancer Res, 2012, 10(9): 1189-1202. |
28 | GUAITA-ESTERUELAS S, BOSQUET A, SAAVEDRA P, et al. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins[J]. Mol Carcinog, 2017, 56(1): 208-217. |
29 | ZHANG X, HUANG C, YUAN Y, et al. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells[J]. Free Radic Biol Med, 2022, 179: 213-228. |
30 | CALDWELL S A, JACKSON S R, SHAHRIARI K S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1[J]. Oncogene, 2010, 29(19): 2831-2842. |
31 | LYNCH T P, FERRER C M, JACKSON S R, et al. Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis [J]. J Biol Chem, 2012, 287(14): 11070-11081. |
32 | FERRER C M, LU T Y, BACIGALUPA Z A, et al. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway[J]. Oncogene, 2017, 36(4): 559-569. |
33 | PARK H J, CARR J R, WANG Z, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis[J]. EMBO J, 2009, 28(19): 2908-2918. |
34 | HALASI M, PANDIT B, WANG M, et al. Combination of oxidative stress and FOXM1 inhibitors induces apoptosis in cancer cells and inhibits xenograft tumor growth[J]. Am J Pathol, 2013, 183(1): 257-265. |
35 | NEWICK K, CUNNIFF B, PRESTON K, et al. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells[J]. PLoS One, 2012, 7(6): e39404. |
36 | XIA L M, HUANG W J, WANG B, et al. Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1[J]. J Cell Biochem, 2009, 106(2): 247-256. |
37 | WEI W S, WANG N, DENG M H, et al. LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis[J]. Redox Biol, 2021, 48: 102201. |
38 | YUNG M M, CHAN D W, LIU V W, et al. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade[J]. BMC Cancer, 2013, 13: 327. |
39 | HU C, LIU D, ZHANG Y, et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells[J]. Oncogene, 2014, 33(22): 2888-2897. |
40 | ECKERS J C, KALEN A L, SARSOUR E H, et al. Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells[J]. Radiat Res, 2014, 182(4): 420-429. |
41 | PETROVIC V, COSTA R H, LAU L F, et al. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin[J]. Cancer Biol Ther, 2010, 9(12): 1008-1016. |
42 | DONG G Z, JEONG J H, LEE Y I, et al. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway[J]. Arch Pharmacal Res, 2017, 40(4): 509-517. |
43 | HALASI M, HITCHINSON B, SHAH B N, et al. Honokiol is a FOXM1 antagonist[J]. Cell Death Dis, 2018, 9: 84. |
44 | JIANG L, CAO X C, CAO J G, et al. Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a[J]. Oncol Lett, 2013, 5(5): 1605-1610. |
45 | BI Z, LIU W, DING R, et al. A novel peptide, 9R-P201, strongly inhibits the viability, proliferation and migration of liver cancer HepG2 cells and induces apoptosis by down-regulation of FoxM1 expression[J]. Eur J Pharmacol, 2017, 796: 175-189. |
46 | XIANG Q, TAN G X, JIANG X, et al. Suppression of FOXM1 transcriptional activities via a single-stranded DNA aptamer generated by SELEX[J]. Sci Rep, 2017, 7: 45377. |
47 | PANDIT B, GARTEL A L. FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy[J]. Cell Cycle, 2011, 10(19): 3269-3273. |
48 | HEGDE N S, SANDERS D A, RODRIGUEZ R, et al. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton[J]. Nat Chem, 2011, 3: 725-731. |
49 | GARTEL A L. Thiazole antibiotics siomycin a and thiostrepton inhibit the transcriptional activity of FOXM1[J]. Front Oncol, 2013, 3: 150. |
50 | GORMALLY M V, DEXHEIMER T S, MARSICO G, et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition[J]. Nat Commun, 2014, 5: 5165. |
51 | SHUKLA S, MILEWSKI D, PRADHAN A, et al. The FOXM1 inhibitor RCM-1 decreases carcinogenesis and nuclear β-catenin[J]. Mol Cancer Ther, 2019, 18(7): 1217-1229. |
52 | ZIEGLER Y, LAWS M J, SANABRIA GUILLEN V, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds[J]. NPJ Breast Cancer, 2019, 5: 45. |
53 | TEH M T. FOXM1 wins molecule of the year 2010 [EB/OL]. [2011-02-20]. http://ismcbbpr.synthasite.com/molyearnews/foxm1-wins-molecule-of-the-year-2010. |
[1] | 陈怀煌, 左武, 卞迁. CTCF调控小鼠AML12肝细胞系脂质代谢功能与基因表达[J]. 上海交通大学学报(医学版), 2024, 44(9): 1069-1082. |
[2] | 木司塔巴·木台力甫, 王俊杰, 钱云臻, 陈溯源, 邵达, 张志刚, 李冬雪. 预免疫策略结合mVenus-p27K-系统构建休眠肿瘤小鼠模型[J]. 上海交通大学学报(医学版), 2024, 44(9): 1104-1114. |
[3] | 何蕊, 颜克鹏, 王静. 靶向髓源性抑制细胞的叶酸循环增强肿瘤免疫治疗效果研究[J]. 上海交通大学学报(医学版), 2024, 44(8): 1011-1022. |
[4] | 吴望舒, 王旻洲, 宋阿会, 赵冰茹, 鲁嘉越, 洪文凯, 顾乐怡, 谢可炜, 陆任华. 复方氨基酸胶囊治疗维持性血液透析患者营养不良及钙磷代谢障碍的有效性和安全性[J]. 上海交通大学学报(医学版), 2024, 44(8): 1023-1029. |
[5] | 许万星, 王琳, 郭巧梅, 王薛庆, 娄加陶. 多模态肺结节诊断模型的临床验证及应用价值探索[J]. 上海交通大学学报(医学版), 2024, 44(8): 1030-1036. |
[6] | 胡飞, 蔡晓涵, 程睿, 季诗雨, 苗嘉欣, 朱晏, 范广建. 骨肉瘤免疫微环境及其免疫治疗临床转化研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 814-821. |
[7] | 张烨晟, 杨易静, 黄依雯, 施珑玙, 王曼媛, 陈思思. 肿瘤微环境免疫细胞调节肿瘤细胞耐药性的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 830-838. |
[8] | 夏西茜, 丁珂珂, 张慧恒, 彭旭飞, 孙昳旻, 唐雅珺, 汤晓芳. 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 839-846. |
[9] | 胡晨阳, 陆绍永, 杨秀岩. SAE1与SAE2蛋白相互作用肽抑制剂的多种体外筛选体系的构建与评价[J]. 上海交通大学学报(医学版), 2024, 44(5): 567-575. |
[10] | 李萍, 蒋惠如, 叶梦月, 王雅玉, 陈潇雨, 袁安彩, 徐文杰, 戴慧敏, 陈曦, 闫小响, 涂圣贤, 郑元琦, 张薇, 卜军. 基于上海社区老年人群队列的心血管疾病和恶性肿瘤的危险因素流行特征分析[J]. 上海交通大学学报(医学版), 2024, 44(5): 617-625. |
[11] | 王梦婷, 陈怡楠, 轩辕欣阳, 袁海花. 肺癌恶性胸腔积液来源肿瘤细胞的小鼠PDX模型构建及实验验证[J]. 上海交通大学学报(医学版), 2024, 44(4): 435-443. |
[12] | 刘林楠, 冯莉, 王龙, 刘嘉寅, 范志松. 多能蛋白聚糖在恶性肿瘤中的表达及生物学作用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 525-530. |
[13] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
[14] | 刘美伶, 周亚兵, 王晓强. 儿童神经纤维瘤病1型颅内肿瘤性病变的治疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 399-406. |
[15] | 邓青松, 张长青, 陶诗聪. 烟酰胺代谢相关基因与骨关节炎的关系探索[J]. 上海交通大学学报(医学版), 2024, 44(2): 145-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||