| [1] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Cli, 2023, 73(1): 17-48.
|
| [2] |
GIAQUINTO A N, SUNG H, MILLER K D, et al. Breast cancer statistics, 2022[J]. CA Cancer J Cli, 2022, 72(6): 524-541.
|
| [3] |
KENT OSBORNE C, SCHIFF R. Mechanisms of endocrine resistance in breast cancer[J]. Annu Rev Med, 2011, 62: 233-247.
|
| [4] |
LIN N U, WINER E P. Advances in adjuvant endocrine therapy for postmenopausal women[J]. J Clin Oncol, 2008, 26(5): 798-805.
|
| [5] |
PAN H C, GRAY R, BRAYBROOKE J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med,2017, 377(19): 1836-1846.
|
| [6] |
HORTOBAGYI G N, STEMMER S M, BURRIS H A, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer[J]. N Engl J Med, 2016, 375(18): 1738-1748.
|
| [7] |
ZENG Z, FU M Y, HU Y, et al. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer[J]. Mol Cancer, 2023, 22(1): 172.
|
| [8] |
WINKLER J, ABISOYE-OGUNNIYAN A, METCALF K J, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis[J]. Nat Commun, 2020, 11(1): 5120.
|
| [9] |
WU M, CAO M L, HE Y Q, et al. A novel role of low molecular weight hyaluronan in breast cancer metastasis[J]. FASEB J, 2015, 29(4): 1290-1298.
|
| [10] |
ANTTILA M A, TAMMI R H, TAMMI M I, et al. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer[J]. Cancer Res, 2000, 60(1): 150-155.
|
| [11] |
ROPPONEN K, TAMMI M, PARKKINEN J, et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer[J]. Cancer Res, 1998, 58(2): 342-347.
|
| [12] |
YANG C X, CAO M L, LIU H, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering[J]. J Biol Chem, 2012, 287(51): 43094-43107.
|
| [13] |
LIU B H, LIU Y T, YANG S, et al. Enhanced desmosome assembly driven by acquired high-level desmoglein-2 promotes phenotypic plasticity and endocrine resistance in ER+ breast cancer[J]. Cancer Lett, 2024, 600: 217179.
|
| [14] |
KOBAYASHI T, CHANMEE T, ITANO N. Hyaluronan: metabolism and function[J]. Biomolecules, 2020, 10(11): 1525.
|
| [15] |
FEINBERG A P, LEVCHENKO A. Epigenetics as a mediator of plasticity in cancer[J]. Science, 2023, 379(6632): eaaw3835.
|
| [16] |
CAON I, BARTOLINI B, PARNIGONI A, et al. Revisiting the hallmarks of cancer: the role of hyaluronan[J]. Semin Cancer Biol, 2020, 62: 9-19.
|
| [17] |
BOURGUIGNON L Y W, SHIINA M, LI J J. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression[J]. Adv Cancer Res, 2014, 123: 255-275.
|
| [18] |
SKANDALIS S S, KARALIS T T, CHATZOPOULOS A, et al. Hyaluronan-CD44 axis orchestrates cancer stem cell functions[J]. Cell Signal, 2019, 63: 109377.
|
| [19] |
JU F, ATYAH M M, HORSTMANN N, et al. Characteristics of the cancer stem cell niche and therapeutic strategies[J]. Stem Cell Res Ther, 2022, 13(1): 233.
|
| [20] |
LEE I C, WU Y C, HUNG W S. Hyaluronic acid-based multilayer films regulate hypoxic multicellular aggregation of pancreatic cancer cells with distinct cancer stem-cell-like properties[J]. ACS Appl Mater Interfaces, 2018, 10(45): 38769-38779.
|
| [21] |
OHNO Y, SHINGYOKU S, MIYAKE S, et al. Differential regulation of the sphere formation and maintenance of cancer-initiating cells of malignant mesothelioma via CD44 and ALK4 signaling pathways[J]. Oncogene, 2018, 37(49): 6357-6367.
|
| [22] |
SKANDALIS S S, KARALIS T, HELDIN P. Intracellular hyaluronan: importance for cellular functions[J]. Semin Cancer Biol, 2020, 62: 20-30.
|
| [23] |
WANG S J, BOURGUIGNON L Y W. Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance[J]. Am J Pathol, 2011, 178(3): 956-963.
|
| [24] |
BOURGUIGNON L Y W, PEYROLLIER K, XIA W L, et al. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells[J]. J Biol Chem, 2008, 283(25): 17635-17651.
|
| [25] |
CHEN L Q, BOURGUIGNON L Y W. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells[J]. Mol Cancer, 2014, 13: 52.
|
| [26] |
WANG H, ZHANG G L, LIU Y W, et al. Glycocalyx hyaluronan removal-induced increasing of cell stiffness delays breast cancer cells progression[J]. Cell Mol Life Sci, 2025, 82(1): 96.
|
| [27] |
AKIMA K, ITO H, IWATA Y, et al. Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity[J]. J Drug Target, 1996, 4(1): 1-8.
|
| [28] |
THOMPSON C B, MICHAEL SHEPARD H, O'CONNOR P M, et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models[J]. Mol Cancer Ther, 2010, 9(11): 3052-3064.
|
| [29] |
JACOBETZ M A, CHAN D S, NEESSE A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer[J]. Gut, 2013, 62(1): 112-120.
|
| [30] |
MOROSI L, MERONI M, UBEZIO P, et al. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models[J]. J Exp Clin Cancer Res, 2021, 40(1): 286.
|