JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (8): 1094-1098.doi: 10.3969/j.issn.1674-8115.2021.08.016
• Review • Previous Articles Next Articles
Ying-jie CHENG(), Qian-qian SUN, Min ZHAO()
Online:
2021-08-28
Published:
2021-08-13
Contact:
Min ZHAO
E-mail:chengyj16@163.com;drminzhao@gmail.com
Supported by:
CLC Number:
Ying-jie CHENG, Qian-qian SUN, Min ZHAO. Research progress in epigenetics in methamphetamine use and addiction[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1094-1098.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.08.016
1 | Chan B, Freeman M, Kondo K, et al. Pharmacotherapy for methamphetamine/amphetamine use disorder: a systematic review and meta-analysis [J]. Addiction, 2019, 114(12):2122-2136. |
2 | Volkow ND, Morales M. The brain on drugs: from reward to addiction[J]. Cell, 2015, 162(4): 712-725. |
3 | Waddington CH. The epigenotype [J]. Int J Epidemiol, 2012, 41(1): 10-13. |
4 | Nebbioso A, Tambaro FP, Dell'Aversana C, et al. Cancer epigenetics: moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. |
5 | Hwang JY, Aromolaran KA, Zukin RS. The emerging field of epigenetics in neurodegeneration and neuroprotection[J]. Nat Rev Neurosci, 2017, 18(6): 347-361. |
6 | Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction[J]. Curr Opin Neurobiol, 2013, 23(4): 521-528. |
7 | Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705. |
8 | Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. |
9 | Martin TA, Jayanthi S, McCoy MT, et al. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens[J]. PLoS One, 2012, 7(3): e34236. |
10 | Li H, Li F, Wu N, et al. Methamphetamine induces dynamic changes of histone deacetylases in different phases of behavioral sensitization[J]. CNS Neurosci Ther, 2014, 20(9): 874-876. |
11 | Jayanthi S, McCoy MT, Chen B, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms[J]. Biol Psychiatry, 2014, 76(1): 47-56. |
12 | Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents[J]. Epigenetics, 2015, 10(7): 574-580. |
13 | Li JX, Han R, Deng YP, et al. Different effects of valproate on methamphetamine- and cocaine-induced behavioral sensitization in mice[J]. Behav Brain Res, 2005, 161(1): 125-132. |
14 | Coccurello R, Caprioli A, Ghirardi O, et al. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice[J]. Ann N Y Acad Sci, 2007, 1122: 260-275. |
15 | Harkness JH, Hitzemann RJ, Edmunds S, et al. Effects of sodium butyrate on methamphetamine-sensitized locomotor activity[J]. Behav Brain Res, 2013, 239: 139-147. |
16 | Zhu J, Zhao N, Chen Y, et al. Sodium butyrate modulates a methamphetamine-induced conditioned place preference [J]. J Neurosci Res, 2017, 95(4): 1044-1052. |
17 | Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. |
18 | Krasnova IN, Chiflikyan M, Justinova Z, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat[J]. Neurobiol Dis, 2013, 58: 132-143. |
19 | Aguilar-Valles A, Vaissière T, Griggs EM, et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation[J]. Biol Psychiatry, 2014, 76(1): 57-65. |
20 | Ikegami D, Narita M, Imai S, et al. Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine [J]. Addict Biol, 2010, 15(3): 358-361. |
21 | González B, Jayanthi S, Gomez N, et al. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82: 1-11. |
22 | Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2): 81-92. |
23 | Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. |
24 | Itzhak Y, Ergui I, Young JI. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring[J]. Mol Psychiatry, 2015, 20(2): 232-239. |
25 | Biagioni F, Ferese R, Limanaqi F, et al. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons[J]. Brain Res, 2019, 1719: 157-175. |
26 | Salehzadeh SA, Mohammadian A, Salimi F. Effect of chronic methamphetamine injection on levels of BDNF mRNA and its CpG island methylation in prefrontal cortex of rats[J]. Asian J Psychiatr, 2020, 48: 101884. |
27 | Fan XY, Yang JY, Dong YX, et al. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the synaptophysin promoter[J]. Addict Biol, 2020, 25(1): e12697. |
28 | Yuka KS, Nishizawa D, Hasegawa J, et al. A single medical marker for diagnosis of methamphetamine addiction: DNA methylation of SHATI/NAT8L promoter sites from patient blood[J]. Curr Pharm Des, 2020, 26(2): 260-264. |
29 | Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain[J]. Brain Res, 2015, 1629: 126-134. |
30 | Jiang W, Li J, Zhang Z, et al. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine[J]. Eur J Pharmacol, 2014, 745: 243-248. |
31 | Lee HJ, Bae EJ, Lee SJ. Extracellular alpha-synuclein: a novel and crucial factor in Lewy body diseases [J]. Nat Rev Neurol, 2014, 10(2): 92-98. |
32 | Callaghan RC, Cunningham JK, Sajeev G, et al. Incidence of Parkinson′s disease among hospital patients with methamphetamine-use disorders[J]. Mov Disord, 2010, 25(14): 2333-2339. |
33 | Qi J, Yang JY, Wang F, et al. Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement[J]. Neuropharmacology, 2009, 56(5): 856-865. |
34 | Jayanthi S, Gonzalez B, McCoy MT, et al. Methamphetamine induces TET1-and TET3-dependent DNA hydroxymethylation of crh and avp genes in the rat nucleus accumbens[J]. Mol Neurobiol, 2018, 55(6): 5154-5166. |
35 | Cadet JL, Brannock C, Krasnova IN, et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence[J]. Mol Psychiatry, 2017, 22(8): 1196-1204. |
36 | Eddy SR. Non-coding RNA genes and the modern RNA world[J]. Nat Rev Genet, 2001, 2(12): 919-929. |
37 | Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94. |
38 | Fu XD. Non-coding RNA: a new frontier in regulatory biology[J]. Natl Sci Rev, 2014, 1(2): 190-204. |
39 | Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465. |
40 | Zhu L, Zhu J, Liu Y, et al. Chronic methamphetamine regulates the expression of microRNAs and putative target genes in the nucleus accumbens of mice[J]. J Neurosci Res, 2015, 93(10): 1600-1610. |
41 | Du HY, Cao DN, Chen Y, et al. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: from controlled drug intake to escalated drug intake[J]. Neurosci Lett, 2016, 611: 21-27. |
42 | Bosch PJ, Benton MC, Macartney-Coxson D, et al. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats[J]. BMC Neurosci, 2015, 16: 43. |
43 | Zhang K, Wang Q, Jing X, et al. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder[J]. Sci Rep, 2016, 6: 35691. |
44 | Sim MS, Soga T, Pandy V, et al. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens[J]. Metab Brain Dis, 2017, 32(6): 1767-1783. |
45 | Li H, Li C, Zhou Y, et al. Expression of microRNAs in the serum exosomes of methamphetamine-dependent rats vs.ketamine-dependent rats[J]. Exp Ther Med, 2018, 15(4): 3369-3375. |
46 | Shi JJ, Cao DN, Liu HF, et al. Dorsolateral striatal miR-134 modulates excessive methamphetamine intake in self-administering rats[J]. Metab Brain Dis, 2019, 34(4): 1029-1041. |
47 | Meng Y, Zhang Y, Tregoubov V, et al. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton[J]. Rev Neurosci, 2003, 14(3): 233-240. |
48 | Du LF, Shen K, Bai Y, et al. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis[J]. Toxicol Lett, 2019, 301: 53-63. |
49 | Zhang Y, Shen K, Bai Y, et al. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: implications for methamphetamine-mediated neurotoxicity[J]. Autophagy, 2016, 12(9): 1538-1559. |
50 | Yu G, Song Y, Xie C, et al. MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: role of the target protein Peli1[J]. Toxicol Appl Pharmacol, 2019, 370: 145-153. |
51 | Zhao Y, Zhang K, Jiang H, et al. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder[J]. J Neuroimmune Pharmacol, 2016, 11(3): 542-548. |
52 | Gu WJ, Zhang C, Zhong Y, et al. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder[J]. Biomed Pharmacother, 2020, 125: 109918. |
53 | Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9): 1775-1789. |
54 | Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription[J]. BMC Biol, 2013, 11: 59. |
55 | Zhu L, Zhu J, Liu Y, et al. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse[J]. BMC Neurosci, 2015, 16: 18. |
56 | Xiong K, Long L, Zhang X, et al. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro [J]. Toxicol In Vitro, 2017, 44: 1-10. |
57 | Ip JY, Sone M, Nashiki C, et al. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine[J]. Sci Rep, 2016, 6: 27204. |
58 | Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. |
59 | Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction[J]. Neurosci Lett, 2019, 701: 146-153. |
[1] | Dan WU, Li-ping GE. Research progress of DNA methylation in gestational diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1120-1124. |
[2] | Shu-jun WAN, Xiang KONG, Kun LÜ. Relationship between non-coding RNAs and vascular diseases of diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 665-670. |
[3] | Ping-yuan YANG, Hai-feng JIANG, Min ZHAO. Research progress in cue-reactivity of addictive substance and its neural mechanism [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 376-379. |
[4] | Liang-jun LIN, Wei-di WANG, Pei WANG, Guan-ning LIN, Zhen WANG. Research progress in epigenetics of obsessive-compulsive disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 267-272. |
[5] | Meng-di JIANG, Wen ZHANG. Progress in histone modification and targeted intervention in diabetic nephropathy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 103-107. |
[6] | XIANG Si-ying, LI Ning-ning, XU Yi-feng#, CHEN Jian-hua#. Advances in DNA methylation mechanism of antipsychotic-induced metabolic syndrome [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1656-1659. |
[7] | LIU Jie, QIU Xiao-chun. Research hotspots and trends of breast cancer stem cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(07): 881-888. |
[8] | ZHANG Peng1, CHANG Zheng-yan2, YANG Lei1, XUE Song1, LIAN Feng1. Bioinformatics analysis of differentially expressed genes in ischemic cardiomyopathy [J]. , 2019, 39(7): 698-. |
[9] | XU Xiao-min, CHEN Tian-zhen, JIANG Hai-feng. Modulating neural circuits in substance addiction with repetitive transcranial magnetic stimulation [J]. , 2019, 39(6): 655-. |
[10] | JIANG Yun-feng,CHENG Yan-yong,SUN Yu. Role of long non-coding RNAPeg13 in apoptosis of developing primary neurons following sevoflurane injury [J]. , 2019, 39(5): 469-. |
[11] | FANG Yu, WANG Wei-di, CHENG Ying, CUI Dong-hong. Research progress on the role of long non-coding RNAs in central nervous system and schizophrenia [J]. , 2019, 39(2): 198-. |
[12] | SUN Ying1, HU Mei-jie2, GU Wei1, LI Jian1, WANG Ji1, ZHENG Xiong1. Expression and clinical significance of long-chain non-coding RNA lincRNA-BBOX1-2 in gastric cancer [J]. , 2019, 39(10): 1178-. |
[13] | FU Xiao1, HUANG Rui1, FAN Xian-qun2, ZHANG He2. Roles of long non-coding RNA in intraocular malignant tumor and its mechanisms [J]. , 2018, 38(6): 699-. |
[14] | Lü Ye-hui1, 2, 3, LI Zhi-hong1, LIU Li1, LI Shi-ying1, LI Kun1, YANG Zhi-fang1, CHEN Yi-jiu2, 3. Methodological research of RNA extraction and quantitative analysis of long non-coding RNA formalin-fixed paraffin-embedded human brain specimens [J]. , 2018, 38(4): 400-. |
[15] | FENG Hai-zhong. Histone modification and glioma tumorigenesis [J]. , 2018, 38(1): 1-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||