
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (12): 1636-1643.doi: 10.3969/j.issn.1674-8115.2025.12.009
• Review • Previous Articles
DU Tailai1,2, HUANG Zhanpeng1,2(
)
Received:2025-07-27
Accepted:2025-10-13
Online:2025-12-19
Published:2025-12-19
Contact:
HUANG Zhanpeng
E-mail:huangzhp27@mail.sysu.edu.cn
Supported by:CLC Number:
DU Tailai, HUANG Zhanpeng. Advances in metabolic modulators as therapeutic agents for heart failure[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1636-1643.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.12.009
| [1] | LOPASCHUK G D, KARWI Q G, TIAN R, et al. Cardiac energy metabolism in heart failure[J]. Circ Res, 2021, 128(10): 1487-1513. |
| [2] | NEUBAUER S. The failing heart: an engine out of fuel[J]. N Engl J Med, 2007, 356(11): 1140-1151. |
| [3] | BERGMAN G, ATKINSON L, METCALFE J, et al. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris[J]. Eur Heart J, 1980, 1(4): 247-253. |
| [4] | DRAKE-HOLLAND A J, PASSINGHAM J E. The effect of Oxfenicine on cardiac carbohydrate metabolism in intact dogs[J]. Basic Res Cardiol, 1983, 78(1): 19-27. |
| [5] | BACHMANN E, WEBER E. Biochemical mechanisms of oxfenicine cardiotoxicity[J]. Pharmacology, 1988, 36(4): 238-248. |
| [6] | SCHMIDT-SCHWEDA S, HOLUBARSCH C. First clinical trial with etomoxir in patients with chronic congestive heart failure[J]. Clin Sci (Lond), 2000, 99(1): 27-35. |
| [7] | HOLUBARSCH C J F, ROHRBACH M, KARRASCH M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study[J]. Clin Sci (Lond), 2007, 113(4): 205-212. |
| [8] | SCHWARZER M, FAERBER G, RUECKAUER T, et al. The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo[J]. Basic Res Cardiol, 2009, 104(5): 547-557. |
| [9] | ASHRAFIAN H, HOROWITZ J D, FRENNEAUX M P. Perhexiline[J]. Cardiovasc Drug Rev, 2007, 25(1): 76-97. |
| [10] | LEE L, CAMPBELL R, SCHEUERMANN-FREESTONE M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment[J]. Circulation, 2005, 112(21): 3280-3288. |
| [11] | ABOZGUIA K, ELLIOTT P, MCKENNA W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy[J]. Circulation, 2010, 122(16): 1562-1569. |
| [12] | BEADLE R M, WILLIAMS L K, KUEHL M, et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy[J]. JACC Heart Fail, 2015, 3(3): 202-211. |
| [13] | CAPPOLA T P. Perhexiline: lessons for heart failure therapeutics[J]. JACC Heart Fail, 2015, 3(3): 212-213. |
| [14] | KANTOR P F, LUCIEN A, KOZAK R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase[J]. Circ Res, 2000, 86(5): 580-588. |
| [15] | FRAGASSO G, SALERNO A, LATTUADA G, et al. Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure[J]. Heart, 2011, 97(18): 1495-1500. |
| [16] | MOMEN A, ALI M, KARMAKAR P K, et al. Effects of sustained-release trimetazidine on chronically dysfunctional myocardium of ischemic dilated cardiomyopathy: six months follow-up result[J]. Indian Heart J, 2016, 68(6): 809-815. |
| [17] | JATAIN S, KAPOOR A, SINHA A, et al. Metabolic manipulation in dilated cardiomyopathy: assessing the role of trimetazidine[J]. Indian Heart J, 2016, 68(6): 803-808. |
| [18] | TUUNANEN H, ENGBLOM E, NAUM A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy[J]. Circulation, 2008, 118(12): 1250-1258. |
| [19] | WINTER J L, CASTRO P F, QUINTANA J C, et al. Effects of trimetazidine in nonischemic heart failure: a randomized study[J]. J Card Fail, 2014, 20(3): 149-154. |
| [20] | CHANDLER M P, STANLEY W C, MORITA H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure[J]. Circ Res, 2002, 91(4): 278-280. |
| [21] | SABBAH H N, CHANDLER M P, MISHIMA T, et al. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure[J]. J Card Fail, 2002, 8(6): 416-422. |
| [22] | UNDROVINAS N A, MALTSEV V A, BELARDINELLI L, et al. Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure[J]. J Physiol Sci, 2010, 60(4): 245-257. |
| [23] | NIE J L, DUAN Q L, HE M Y, et al. Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na+ and Ca2+ handling[J]. J Cell Physiol, 2019, 234(7): 11587-11601. |
| [24] | WILLIAMS S, POURRIER M, MCAFEE D, et al. Ranolazine improves diastolic function in spontaneously hypertensive rats[J]. Am J Physiol Heart Circ Physiol, 2014, 306(6): H867-H881. |
| [25] | COPPINI R, FERRANTINI C, YAO L N, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy[J]. Circulation, 2013, 127(5): 575-584. |
| [26] | MURRAY G L, COLOMBO J. Ranolazine preserves and improves left ventricular ejection fraction and autonomic measures when added to guideline-driven therapy in chronic heart failure[J]. Heart Int, 2014, 9(2): 66-73. |
| [27] | MAIER L S, LAYUG B, KARWATOWSKA-PROKOPCZUK E, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study[J]. JACC Heart Fail, 2013, 1(2): 115-122. |
| [28] | WANG T, MCDONALD C, PETRENKO N B, et al. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function[J]. Mol Cell Biol, 2015, 35(7): 1281-1298. |
| [29] | SCHILLING J, KELLY D P. The PGC-1 cascade as a therapeutic target for heart failure[J]. J Mol Cell Cardiol, 2011, 51(4): 578-583. |
| [30] | XU W Y, BILLON C, LI H, et al. Novel pan-ERR agonists ameliorate heart failure through enhancing cardiac fatty acid metabolism and mitochondrial function[J]. Circulation, 2024, 149(3): 227-250. |
| [31] | MONTAIGNE D, BUTRUILLE L, STAELS B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823. |
| [32] | LEGCHENKO E, CHOUVARINE P, BORCHERT P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation[J]. Sci Transl Med, 2018, 10(438): eaao0303. |
| [33] | DAMBROVA M, MAKRECKA-KUKA M, VILSKERSTS R, et al. Pharmacological effects of meldonium: biochemical mechanisms and biomarkers of cardiometabolic activity[J]. Pharmacol Res, 2016, 113(Pt B): 771-780. |
| [34] | HAYASHI Y, KIRIMOTO T, ASAKA N, et al. Beneficial effects of MET-88, a γ-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction[J]. Eur J Pharmacol, 2000, 395(3): 217-224. |
| [35] | NAKANO M, KIRIMOTO T, ASAKA N, et al. Beneficial effects of MET-88 on left ventricular dysfunction and hypertrophy with volume overload in rats[J]. Fundam Clin Pharmacol, 1999, 13(5): 521-526. |
| [36] | KIRIMOTO T, NOBORI K, ASAKA N, et al. Beneficial effect of MET-88, a γ-butyrobetaine hydroxylase inhibitor, on energy metabolism in ischemic dog hearts[J]. Arch Int Pharmacodyn Ther, 1996, 331(2): 163-178. |
| [37] | STATSENKO M E, SHILINA N N, TURKINA S V. Use of meldonium in the combination treatment of patients with heart failure in the early postinfarction period[J]. Ter Arkh, 2014, 86(4): 30-35. |
| [38] | STATSENKO M E, BELENKOVA S V, SPOROVA O E, et al. The use of mildronate in combined therapy of postinfarction chronic heart failure in patients with type 2 diabetes mellitus[J]. Klin Med (Mosk), 2007, 85(7): 39-42. |
| [39] | MASOUD W G T, USSHER J R, WANG W, et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation[J]. Cardiovasc Res, 2014, 101(1): 30-38. |
| [40] | BERSIN R M, STACPOOLE P W. Dichloroacetate as metabolic therapy for myocardial ischemia and failure[J]. Am Heart J, 1997, 134(5 Pt 1): 841-855. |
| [41] | WANG P P, LLOYD S G, CHATHAM J C. Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart[J]. Circulation, 2005, 111(16): 2066-2072. |
| [42] | KATO T, NIIZUMA S, INUZUKA Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure[J]. Circ Heart Fail, 2010, 3(3): 420-430. |
| [43] | BØGH N, HANSEN E S S, OMANN C, et al. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure[J]. Sci Rep, 2020, 10(1): 8158. |
| [44] | BERSIN R M, WOLFE C, KWASMAN M, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate[J]. J Am Coll Cardiol, 1994, 23(7): 1617-1624. |
| [45] | LEWIS J F, DACOSTA M, WARGOWICH T, et al. Effects of dichloroacetate in patients with congestive heart failure[J]. Clin Cardiol, 1998, 21(12): 888-892. |
| [46] | AIZAWA K, IKEDA A, TOMIDA S, et al. A potent PDK4 inhibitor for treatment of heart failure with reduced ejection fraction[J]. Cells, 2023, 13(1): 87. |
| [47] | BEI Y H, ZHU Y J, ZHOU J W, et al. Inhibition of Hmbox1 promotes cardiomyocyte survival and glucose metabolism through Gck activation in ischemia/reperfusion injury[J]. Circulation, 2024, 150(11): 848-866. |
| [48] | HORTON J L, DAVIDSON M T, KURISHIMA C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J]. JCI Insight, 2019, 4(4): e124079. |
| [49] | DENG Y, XIE M D, LI Q, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res, 2021, 128(2): 232-245. |
| [50] | PACKER M, ANKER S D, BUTLER J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. |
| [51] | MCMURRAY J J V, SOLOMON S D, INZUCCHI S E, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. |
| [52] | ANKER S D, BUTLER J, FILIPPATOS G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. N Engl J Med, 2021, 385(16): 1451-1461. |
| [53] | NASSIF M E, WINDSOR S L, BORLAUG B A, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial[J]. Nat Med, 2021, 27(11): 1954-1960. |
| [54] | GHEZZI C, LOO D D F, WRIGHT E M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2[J]. Diabetologia, 2018, 61(10): 2087-2097. |
| [55] | XIE Y F, WEI Y J, LI D, et al. Mechanisms of SGLT2 inhibitors in heart failure and their clinical value[J]. J Cardiovasc Pharmacol, 2023, 81(1): 4-14. |
| [56] | PANDEY A K, BHATT D L, PANDEY A, et al. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction[J]. Eur Heart J, 2023, 44(37): 3640-3651. |
| [57] | WU X Q, LIU H, BROOKS A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11): 926-943. |
| [58] | KOLIJN D, PABEL S, TIAN Y N, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation[J]. Cardiovasc Res, 2021, 117(2): 495-507. |
| [59] | FERRANNINI E, MARK M, MAYOUX E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis[J]. Diabetes Care, 2016, 39(7): 1108-1114. |
| [60] | MUDALIAR S, ALLOJU S, HENRY R R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis[J]. Diabetes Care, 2016, 39(7): 1115-1122. |
| [61] | LOPASCHUK G D, VERMA S. Empagliflozin's fuel hypothesis: not so soon[J]. Cell Metab, 2016, 24(2): 200-202. |
| [62] | VERMA S, RAWAT S, HO K L, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors[J]. JACC Basic Transl Sci, 2018, 3(5): 575-587. |
| [63] | HO K L, KARWI Q G, WAGG C, et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency[J]. Cardiovasc Res, 2021, 117(4): 1178-1187. |
| [64] | ALLEN M E, PENNINGTON E R, PERRY J B, et al. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats[J]. Commun Biol, 2020, 3(1): 389. |
| [65] | ZHANG L, FENG M W, WANG X J, et al. Peptide Szeto-Schiller 31 ameliorates doxorubicin-induced cardiotoxicity by inhibiting the activation of the p38 MAPK signaling pathway[J]. Int J Mol Med, 2021, 47(4): 63. |
| [66] | YEH J N, SUNG P H, CHIANG J Y, et al. Early treatment with combination of SS31 and entresto effectively preserved the heart function in doxorubicin-induced dilated cardiomyopathic rat[J]. Biomed Pharmacother, 2021, 141: 111886. |
| [67] | CHATFIELD K C, SPARAGNA G C, CHAU S, et al. Elamipretide improves mitochondrial function in the failing human heart[J]. JACC Basic Transl Sci, 2019, 4(2): 147-157. |
| [68] | DAUBERT M A, YOW E, DUNN G, et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide[J]. Circ Heart Fail, 2017, 10(12): e004389. |
| [69] | BUTLER J, KHAN M S, ANKER S D, et al. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: the PROGRESS-HF phase 2 trial[J]. J Card Fail, 2020, 26(5): 429-437. |
| [70] | WONG A K F, SYMON R, ALZADJALI M A, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure[J]. Eur J Heart Fail, 2012, 14(11): 1303-1310. |
| [71] | LARSEN A H, JESSEN N, NØRRELUND H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes[J]. Eur J Heart Fail, 2020, 22(9): 1628-1637. |
| [72] | YANG J, HOLMAN G D. Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis[J]. Endocrinology, 2006, 147(6): 2728-2736. |
| [73] | SCHERNTHANER G, BRAND K, BAILEY C J. Metformin and the heart: update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure[J]. Metabolism, 2022, 130: 155160. |
| [74] | 中国医师协会心血管内科医师分会, 中国心衰中心联盟, 《慢性心力衰竭“新四联”药物治疗临床决策路径专家共识》工作组, 等. 慢性心力衰竭“新四联”药物治疗临床决策路径专家共识[J]. 中国循环杂志, 2022, 37(8): 769-781. |
| Chinese College of Cardiovascular Physicians, Chinese Heart Failure Center Alliance, The Task Force for Expert Consensus Decision Pathway for Quadruple Pharmacotherapy Management of Chronic Heart Failure, et al. Expert consensus on decision-making pathway for quadruple pharmacotherapy management of chronic heart failure[J]. Chinese Circulation Journal, 2022, 37(8): 769-781. |
| [1] | LI Long, ZHAO Xia, JIN Shan, LI Zeying, LÜ Fuqiang, PANG Lijuan, LIU Kejian. Deciphering the protective role of AZGP1 in heart failure through Mendelian randomization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1035-1045. |
| [2] | HE Suhui, ZHAO Yinlong, CHANG Alex Chia Yu. Effects of telomerase gene therapy on pressure overload-induced heart failure in mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 949-956. |
| [3] | XU Tianyun, SHEN Yiming, JIANG Meng. Clinical management of heart failure with improved ejection fraction: treatment and maintenance [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 493-499. |
| [4] | AN Junyi, CHEN Biying, CHEN Xunrui, YIN Shanshan, BIAN Zhouliang, LIU Feng. SFXN3 expression in head and neck squamous cell carcinoma and its effect on cell proliferation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 427-434. |
| [5] | KONG Ruxin, ZHOU Yaqun, WEI Tingyi, LEI Ming. Function and mechanism of cancer-testis antigen CT63 in chronic myeloid leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1347-1358. |
| [6] | Aishanjiang Kedeerya, FU Yi, LAI Donglin, WU Hailong, GONG Wei. An integrated prognostic model of nuclear-encoded mitochondrial gene signature and clinical information for hepatocellular carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 1-12. |
| [7] | LU Qifan, LIU Qiming, ZHOU Hongmei, CHAI Yezi, JIANG Meng, PU Jun. Effect of somatic symptoms, anxiety and depression on clinical prognosis in patients with chronic heart failure [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1153-1161. |
| [8] | JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 761-767. |
| [9] | HONG Hanxin, WANG Longhao, LIU Huihui, PENG Hu, WU Hao, YANG Tao. Construction of translocase of inner mitochondrial membrane 8A gene knockout mice and study of its inner ear function [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 261-268. |
| [10] | LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236. |
| [11] | SHA Xudong, WANG Chenfei, LU Jia, YU Zhihua. Regulation of high-fat diet-induced microglial metabolism by transient receptor potential vanilloid type 1 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1493-1506. |
| [12] | XIE Lin, CHENG Ye, ZHENG Qimin, ZHANG Xi, FU Lili, CHEN Min, WANG Yi, MEI Changlin, XIE Jingyuan, GU Xiangchen. Preventive effect of icariin on transition from acute kidney injury to chronic kidney disease in mouse model [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 8-19. |
| [13] | LUO Wenyi, CHEN Lin, YUAN Li, NI Ping, CAI Xiaoman, ZHANG Yaqing. Rasch analysis of postoperative cardiac rehabilitation and related factors in 3-6-year-old children with congenital heart disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1303-1310. |
| [14] | FENG Baoyi, DONG Tingting, ZHENG Xiaofei, TAO Yong, WU Hao. Comparison of mitochondria and NAD+ level in the murine cochleae of C57BL/6J mice at different ages [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 980-986. |
| [15] | LIN Yijia, CHENG Lizhen, MIAO Ya. Research progress in the role and mechanism of abnormal mitophagy in Alzheimer's disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 387-392. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||