| [1] |
Dvir K, Giordano S, Leone J P. Immunotherapy in breast cancer[J]. Int J Mol Sci, 2024, 25(14): 7517.
|
| [2] |
Xiong X, Zheng L W, Ding Y, et al. Breast cancer: pathogenesis and treatments[J]. Signal Transduct Target Ther, 2025, 10(1): 49.
|
| [3] |
Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics[J]. Nat Rev Genet, 2023, 24(8): 494-515.
|
| [4] |
Pandey A, Bhutani N. Profiling joint tissues at single-cell resolution: advances and insights[J]. Nat Rev Rheumatol, 2024, 20(1): 7-20.
|
| [5] |
Rai M F, Wu C L, Capellini T D, et al. Single cell omics for musculoskeletal research[J]. Curr Osteoporos Rep, 2021, 19(2): 131-140.
|
| [6] |
Arnett L P, Rana R, Chung W W, et al. Reagents for mass cytometry[J]. Chem Rev, 2023, 123(3): 1166-1205.
|
| [7] |
Glasson Y, ChéPeaux L A, Dumé A S, et al. Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology[J]. Semin Immunopathol, 2023, 45(1): 17-28.
|
| [8] |
Kante A, Chevalier M F, SèNe D, et al. Mass cytometry: exploring the immune landscape of systemic autoimmune and inflammatory diseases in the past fourteen years[J]. Front Immunol, 2024, 15: 1509782.
|
| [9] |
Le Rochais M, Hemon P, Pers J O, et al. Application of high-throughput imaging mass cytometry hyperion in cancer research[J]. Front Immunol, 2022, 13: 859414.
|
| [10] |
Naderi-Azad S, Croitoru D, Khalili S, et al. Research techniques made simple: experimental methodology for imaging mass cytometry[J]. J Invest Dermatol, 2021, 141(3): 467-473.e1.
|
| [11] |
Gray G K, Li C M, Rosenbluth J M, et al. A human breast atlas integrating single-cell proteomics and transcriptomics[J]. Dev Cell, 2022, 57(11): 1400-1420.e7.
|
| [12] |
Fan Y Y, Kao C Y, Yang F, et al. Integrated multi-omics analysis model to identify biomarkers associated with prognosis of breast cancer[J]. Front Oncol, 2022, 12: 899900.
|
| [13] |
Wang X, Chai Y Y, Quan Y, et al. NPM1 inhibits tumoral antigen presentation to promote immune evasion and tumor progression[J]. J Hematol Oncol, 2024, 17(1): 97.
|
| [14] |
Li Y, Jiang M L, Ling A Y, et al. UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment[J]. Nat Commun, 2024, 15(1): 1200.
|
| [15] |
Liu H F, Zhao Q W, Tan L Y, et al. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma[J]. Cancer Cell, 2023, 41(4): 693-710.e8.
|
| [16] |
Ma J L, Pang Y H, Shang Y F, et al. CyTOF analysis revealed platelet heterogeneity in breast cancer patients received T-DM1 treatment[J]. Clin Immunol, 2024, 263: 110227.
|
| [17] |
Lo Y C, Keyes T J, Jager A, et al. CytofIn enables integrated analysis of public mass cytometry datasets using generalized anchors[J]. Nat Commun, 2022, 13(1): 934.
|
| [18] |
Rybakowska P, Van Gassen S, Quintelier K, et al. Data processing workflow for large-scale immune monitoring studies by mass cytometry[J]. Comput Struct Biotechnol J, 2021, 19: 3160-3175.
|
| [19] |
Liu X, Song W C, Wong B Y, et al. A comparison framework and guideline of clustering methods for mass cytometry data[J]. Genome Biol, 2019, 20(1): 297.
|
| [20] |
Li X H, Zhang L, Liu C C, et al. Construction of mitochondrial quality regulation genes-related prognostic model based on bulk-RNA-seq analysis in multiple myeloma[J]. Biofactors, 2025, 51(1): e2135.
|
| [21] |
Artyomov M N, Van Den Bossche J. Immunometabolism in the single-cell era[J]. Cell Metab, 2020, 32(5): 710-725.
|
| [22] |
Peeters F, Cappuyns S, Piqué-Gili M, et al. Applications of single-cell multi-omics in liver cancer[J]. JHEP Rep, 2024, 6(7): 101094.
|
| [23] |
Rigamonti A, Viatore M, Polidori R, et al. Integrating AI-powered digital pathology and imaging mass cytometry identifies key classifiers of tumor cells, stroma, and immune cells in non-small cell lung cancer[J]. Cancer Res, 2024, 84(7): 1165-1177.
|
| [24] |
Xie P Y, Guo L, Yu Q, et al. ACE2 enhances sensitivity to PD-L1 blockade by inhibiting macrophage-induced immunosuppression and angiogenesis[J]. Cancer Res, 2025, 85(2): 299-313.
|
| [25] |
Brightman S E, Becker A, Thota R R, et al. Neoantigen-specific stem cell memory-like CD4+ T cells mediate CD8+ T cell-dependent immunotherapy of MHC class Ⅱ-negative solid tumors[J]. Nat Immunol, 2023, 24: 1345-1357.
|
| [26] |
Moradpoor R, Salimi M. Crosstalk between tumor cells and immune system leads to epithelial-mesenchymal transition induction and breast cancer progression[J]. Iran Biomed J, 2021, 25(1): 1-7.
|
| [27] |
Gulati G S, D'Silva J P, Liu Y H, et al. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics[J]. Nat Rev Mol Cell Biol, 2025, 26(1): 11-31.
|
| [28] |
Nolan E, Lindeman G J, Visvader J E. Deciphering breast cancer: from biology to the clinic[J]. Cell, 2023, 186(8): 1708-1728.
|
| [29] |
Barras D, Ghisoni E, Chiffelle J, et al. Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8+ T-myeloid cell networks in melanoma[J]. Sci Immunol, 2024, 9(92): eadg7995.
|
| [30] |
Park J, Hsueh P C, Li Z Y, et al. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity[J]. Immunity, 2023, 56(1): 32-42.
|
| [31] |
van Elsas M J, Middelburg J, Labrie C, et al. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy[J]. Cancer Cell, 2024, 42(6): 1032-1050.e10.
|
| [32] |
Nasir I, Mcguinness C, Poh A R, et al. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies[J]. Trends Immunol, 2023, 44(12): 971-985.
|
| [33] |
Beck J D, Diken M, Suchan M, et al. Long-lasting mRNA-encoded interleukin-2 restores CD8+ T cell neoantigen immunity in MHC class Ⅰ-deficient cancers[J]. Cancer Cell, 2024, 42(4): 568-582.e11.
|
| [34] |
Kersten K, Hu K H, Combes A J, et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer[J]. Cancer Cell, 2022, 40(6): 624-638.e9.
|
| [35] |
Wang K W, Yang Y Q, Wu F J, et al. Comparative analysis of dimension reduction methods for cytometry by time-of-flight data[J]. Nat Commun, 2023, 14(1): 1836.
|