1 |
Fan JQ, Wang MF, Chen HL, et al. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2020, 19(1): 32.
|
2 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3 |
Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J]. Lancet, 2016, 388(10039):73-85.
|
4 |
Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment[J]. Clin Cancer Res, 2012, 18(16): 4266-4276.
|
5 |
叶辰, Zheng L, 原春辉. 胰腺癌免疫微环境及免疫治疗的前景与展望 [J]. 中华外科杂志, 2019, 57(1): 10-15.
|
6 |
Zheng L, Xue J, Jaffee EM, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2013, 144(6): 1230-1240.
|
7 |
卢军, 刘乔飞, 周立,等. 胰腺癌抑制性免疫微环境研究进展 [J]. 中华实验外科杂志, 2018, 35(8): 1393-1398.
|
8 |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123.
|
9 |
Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm[J]. Gut, 2015, 64(9): 1476-1484.
|
10 |
Binenbaum Y, Na'ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma[J]. Drug Resist Updat, 2015, 23: 55-68.
|
11 |
von Ahrens D, Bhagat TD, Nagrath D, et al. The role of stromal cancer-associated fibroblasts in pancreatic cancer[J]. J Hematol Oncol, 2017, 10(1): 76.
|
12 |
Liu QF, Liao Q, Zhao YP. Chemotherapy and tumor microenvironment of pancreatic cancer[J]. Cancer Cell Int, 2017, 17(1): 1-17.
|
13 |
Zhang YF, Jiang SH, Hu LP, et al. Targeting the tumor microenvironment for pancreatic ductal adenocarcinoma therapy[J]. Chin Clin Oncol, 2019, 8(2): 18.
|
14 |
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. PNAS, 2013, 110(50): 20212-20217.
|
15 |
Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer[J]. Clin Cancer Res, 2014, 20(13): 3422-3433.
|
16 |
Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6): 719-734.
|
17 |
徐敏, 王兴鹏. 胰腺星状细胞的发现及其意义 [J]. 胰腺病学, 2003, 3(z1): 25-27.
|
18 |
Allam A, Thomsen AR, Gothwal M, et al. Pancreatic stellate cells in pancreatic cancer: in focus[J]. Pancreatology, 2017, 17(4): 514-522.
|
19 |
Hamada S, Masamune A, Yoshida N, et al. IL-6/STAT3 plays a regulatory role in the interaction between pancreatic stellate cells and cancer cells[J]. Dig Dis Sci, 2016, 61(6): 1561-1571.
|
20 |
Tang D, Yuan Z, Xue X, et al. High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer[J]. Int J Cancer, 2012, 130(10): 2337-2348.
|
21 |
Dineen SP, Lynn KD, Holloway SE, et al. Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice[J]. Cancer Res, 2008, 68(11): 4340-4346.
|
22 |
Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390.
|
23 |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2): 108-119.
|
24 |
Bronte V, Apolloni E, Cabrelle A, et al. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells[J]. Blood, 2000, 96(12): 3838-3846.
|
25 |
Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19): 9518-9527.
|
26 |
Porembka MR, Mitchem JB, Belt BA, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth[J]. Cancer Immunol Immunother, 2012, 61(9): 1373-1385.
|
27 |
Khaled YS, Ammori BJ, Elkord E. Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients[J]. J Immunol Res, 2014, 2014: 879897.
|
28 |
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.
|
29 |
Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host [J]. Cancer Res, 2006, 66(2): 1123-1131.
|
30 |
杨黎, 张毅. 肿瘤相关巨噬细胞研究进展[J]. 中国免疫学杂志, 2020, 36(2): 129-135.
|
31 |
蒋维香, 林彦俊, 岳建明. CD163+、CD204+巨噬细胞在胰腺癌组织中的浸润及临床意义[J]. 国际消化病杂志, 2019, 39(6): 436-439.
|
32 |
Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1 [J]. J Exp Med, 2009, 206(6): 1327-1337.
|
33 |
Wang D, Yang L, Yue D, et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion[J]. Cancer Lett, 2019, 452: 244-253.
|
34 |
Li L, Yang L, Wang L, et al. Impaired T cell function in malignant pleural effusion is caused by TGF-β derived predominantly from macrophages[J]. Int J Cancer, 2016, 139(10): 2261-2269.
|
35 |
Zhang Y, Velez-Delgado A, Mathew E, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer[J]. Gut, 2017, 66(1): 124-136.
|
36 |
Kaneda MM, Cappello P, Nguyen AV, et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression [J]. Cancer Discov, 2016, 6(8):870-885.
|
37 |
黄德良, 朱新海, 盛良翮. 胰腺癌患者外周血中调节性T细胞和辅助性T细胞17的表达及其血清相关因子的检测[J]. 广东医学, 2017, 38(12): 1874-1876.
|
38 |
王秀超, 李鑫, 郝继辉. 调节性T细胞参与胰腺癌免疫微环境重塑的基础与转化研究进展[J]. 中国肿瘤临床, 2018, 45(18): 964-968.
|
39 |
Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646.
|
40 |
Bauer CA, Kim EY, Marangoni F, et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction[J]. J Clin Invest, 2014, 124(6): 2425-2440.
|
41 |
Jang JE, Hajdu CH, Liot C, et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer[J]. Cell Rep, 2017, 20(3): 558-571.
|
42 |
Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+ regulatory T cells suppress NKT cell functions[J]. Cancer Res, 2003, 63(15): 4516-4520.
|
43 |
Soares KC, Rucki AA, Kim V, et al. TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner [J]. Oncotarget, 2015, 6(40): 43005-43015.
|
44 |
Gunderson AJ, Kaneda MM, Tsujikawa T, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer[J]. Cancer Discov, 2016, 6(3): 270-285.
|
45 |
Daley D, Zambirinis CP, Seifert L, et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation [J]. Cell, 2016, 166(6): 1485-1499.e15.
|
46 |
Zamanakou M, Germenis AE, Karanikas V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase [J]. Immunol Lett, 2007,111(2):69-75.
|
47 |
刘文增, 胡渊, 张彩. 胰腺癌的肿瘤微环境及其免疫治疗研究进展 [J]. 中国免疫学杂志, 2018, 34(12): 1901-1906.
|
48 |
Wu Q, Tian Y, Zhang J, et al. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma[J]. Oncotarget, 2017, 8(60): 102721-102738.
|
49 |
Liang X, Sun J, Wu H, et al. PD-L1 in pancreatic ductal adenocarcinoma: a retrospective analysis of 373 Chinese patients using an in vitro diagnostic assay[J]. Diagn Pathol, 2018, 13(1): 5.
|
50 |
Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma[J]. J Immunother, 2010, 33(8): 828-833.
|